Portrait of Dr. Tanzima Islam

Dr. Tanzima Islam

  • Associate Professor at Computer Science, College of Science & Engineering

Scholarly and Creative Works

2025

  • Banday, B., Islam, T. Z., Thopalli, K., & Thiagarajan, J. J. (n.d.). On the role of prompt construction in enhancing efficacy and efficiency of llm-based tabular data generation.

2024

  • Gueroudji, A., Phelps, C., Islam, T. Z., Carns, P., Snyder, S., Dorier, M., … Pouchard, L. C. (2024). Performance Characterization and Provenance of Distributed Task-based Workflows on HPC Platforms. In SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 2032–2039). IEEE. https://doi.org/10.1109/scw63240.2024.00254
  • Phelps, C., Lahiry, A., Islam, T. Z., & Pouchard, L. C. (2024). Reimagine Application Performance as a Graph: Novel Graph-Based Method for Performance Anomaly Classification in High-Performance Computing. In 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC) (Vol. 12, pp. 240–245). IEEE. https://doi.org/10.1109/compsac61105.2024.00041
  • Dey, A., Dhakal, A., Islam, T. Z., Yeom, J.-S., Patki, T., Nichols, D., … Bhatele, A. (2024). Relative Performance Prediction Using Few-Shot Learning. In 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 1764–1769). IEEE. https://doi.org/10.1109/compsac61105.2024.00278
  • Banday, B. H., Islam, T. Z., & Marathe, A. (2024). PERFGEN: A Synthesis and Evaluation Framework for Performance Data using Generative AI. In 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC) (Vol. 46, pp. 188–197). IEEE. https://doi.org/10.1109/compsac61105.2024.00035
  • Zaeed, M., Islam, T. Z., & Indict, V. (2024). Characterize and Compare the Performance of Deep Learning Optimizers in Recurrent Neural Network Architectures. In 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC) (Vol. 12, pp. 39–44). IEEE. https://doi.org/10.1109/compsac61105.2024.00016
  • Fefey, E., & Islam, T. Z. (n.d.). Toward Efficient Deep Learning Inference: On-Node Heterogeneous Scheduling in Edge-Cloud Infrastructure.
  • Islam, T. Z., & Alhajjar, E. (2024, June 3). SIAM Task Force Anticipates Future Directions of Computational Science. Retrieved from https://www.siam.org/publications/siam-news/articles/siam-task-force-anticipates-future-directions-of-computational-science/
  • Kelly, C., Xu, W., Pouchard, L., Van Dam, H., Islam, T. Z., Yoo, S., & Van Dam, K. K. (n.d.). Performance Analysis and Data Reduction for Exascale Scientific Workflows. International Journal of High Performance Computing Applications.

2023

  • Ramadan, T., Lahiry, A., & Islam, T. Z. (2023). Novel Representation Learning Technique Using Graphs for Performance Analytics. In 2023 International Conference on Machine Learning and Applications (ICMLA). IEEE. https://doi.org/10.1109/icmla58977.2023.00198
  • Nicolae, B., Islam, T. Z., Ross, R., Van Dam, H., Assogba, K., Shpilker, P., … Pouchard, L. C. (2023). Building the I (Interoperability) of FAIR for Performance Reproducibility of Large-Scale Composable Workflows in RECUP. In 2023 IEEE 19th International Conference on e-Science (e-Science) (Vol. 11, pp. 1–7). IEEE. https://doi.org/10.1109/e-science58273.2023.10254808

2022

  • Guite, A., Islam, T. Z., Kelley, C., & Xu, W. (2022). Interactive Visual Analysis Tool for Anomaly Provenance Data. IEEE. Retrieved from https://sc22.supercomputing.org/proceedings/tech_poster/poster_files/rpost159s3-file2.pdf
  • Zaeed, M., Islam, T. Z., Cho, Y., Li, S., Luo, H., & Liu, Y. (2022). Analysis and Visualization of Important Performance Counters To Enhance Interpretability of Autotuner Output. IEEE. Retrieved from https://sc22.supercomputing.org/proceedings/tech_poster/poster_files/rpost183s3-file2.pdf
  • Pouchard, L., Islam, T. Z., Nicolae, B., & Ross, R. (n.d.). A (Meta)data Framework for Reproducing Hybrid Workflows with FAIR.
  • Pouchard, L., Islam, T. Z., & Nicolae, B. (2022). RECUP: A (meta)data framework for reproducing hybrid workflows with FAIR. Retrieved from https://works-workshop.org/files/works22_pouchard.pdf
  • Daw, C., Barragan-Cruz, B., Majeske, N., Jagodzinski, F., Islam, T. Z., & Hutchinson, B. (2022). Chapter 5: Low Rank Sampling Methods for Identifying Impactful Pairwise Protein Mutations. In Part of the Computational Biology book series (COBO). Springer Nature. https://doi.org/https://doi.org/10.1007/978-3-031-05914-8_4
  • Islam, T. Z., & Zaeed, M. (2022, October). Dashing enabled GPTune Autotuner. Public git repository. Retrieved from https://gptune.lbl.gov
  • Dey, A., & Islam, T. Z. (2022). Performance Modeling Across Heterogenous Domains Using Few-Shot Learning.
  • Fefey, E., & Islam, T. Z. (2022). Characterization of Deep Learning Inference Workloads.
  • Zaeed, M., & Islam, T. Z. (2022). Analysis and Visualization of Important Performance Counters to Enhance Interpretability of Autotuner Output.
  • Pouchard, L., Islam, T. Z., & Nicolae, B. (2022). Challenges for Implementing FAIR Digital Objects with High Performance Workflows. Retrieved from https://riojournal.com/article/94835/instance/8003496/
  • Islam, T. Z., & Zaeed, M. (2022, September). libNVCD:An easy-to-use, performance measurement and analysis tool for NVIDIA GPUs. Public git repository. Retrieved from https://gptune.lbl.gov
  • Schutte, H., Islam, T. Z., Phelps, C., & Marathe, A. (2022). libNVCD: An Extendable and User-friendly Multi-GPU Performance Measurement Tool (pp. 73–82). IEEE. https://doi.org/10.1109/COMPSAC54236.2022.00019
  • Islam, T. Z., Schutt, H., Phelps, C., & Marathe, A. (n.d.). GPUPD: An Extendable and User-friendly Multi-GPU Performance Measurement Tool. IEEE.

2021

  • Islam, T. Z., & Phelps, C. (2021). HPC@SCALE: A Hands-on Approach for Training Next-Gen HPC Software Architects. https://doi.org/10.1109/HiPCW54834.2021.00011
  • Islam, T. Z., & Phelps, C. (2021). HPC@SCALE: A Hands-on Approach for Training Next-Gen HPC Software Architects. In 2021 IEEE 28th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW) (pp. 29–34). IEEE. https://doi.org/10.1109/hipcw54834.2021.00011
  • Jensen, Q., Jagodzinski, F., & Islam, T. Z. (2021). FILCIO: Application Agnostic I/O Aggregation to Scale Scientific Workflows. IEEE. https://doi.org/10.1109/COMPSAC51774.2021.00236
  • Islam, T. Z., Wu Liang, P., Sweeney, F., Pragner, C., Thiagarajan, J. J., Sharmin, M., & Ahmed, S. (2021). College Life is Hard! - Shedding Light on Stress Prediction for Autistic College Students using Data-Driven Analysis. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC) (Vol. 329, pp. 428–437). IEEE. https://doi.org/10.1109/compsac51774.2021.00066
  • Ramadan, T., Islam, T. Z., Phelps, C. L., Pinnow, N., & Thiagarajan, J. J. (2021). Comparative Code Structure Analysis using Deep Learning for Performance Prediction. In 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) (pp. 151--161).

2020

  • Stratton, J., Albert, M., Jensen, Q., Ismailov, M., Jagodzinski, F., & Islam, T. Z. (2020). Towards Aggregation Based I/O Optimization for Scaling Bioinformatics Applications (pp. 1250--1255). IEEE. https://doi.org/10.1109/COMPSAC48688.2020.00-85
  • Islam, T. Z. (2020). Future Directions of the Cyberinfrastructure for Sustained Scientific Innovation (CSSI) Program. In NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI). Retrieved from https://arxiv.org/abs/2010.15584
  • Islam, T. Z., & Zaeed, M. (2020, August). Dashing: An extendable and programmable toolbox of interpretable ML models. Public git repository. Retrieved from https://gptune.lbl.gov
  • Islam, T. Z. (2020). Performance characterization data for AMReX applications developed by the DOE Exascale Computing Project (ECP). https://doi.org/10.5281/zenodo.3403037

2019

  • Patki, T., Thiagarajan, J. J., Ayala, A., & Islam, T. Z. (2019). Performance optimality or reproducibility: that is the question (pp. 1--30). ACM/IEEE.
  • Islam, T. Z., Ayala, A., Jensen, Q., & Ibrahim, K. (2019). Toward a Programmable Analysis and Visualization Framework for Interactive Performance Analytics. In International Conference for High Performance Computing, Networking, Storage and Analysis (SC) (pp. 70--77). IEEE. https://doi.org/10.1109/ProTools49597.2019.00015
  • Islam, T. Z. (2019, March). SCR: Scalable Checkpoint / Restart (SCR) Library. Retrieved from https://github.com/LLNL/scr
  • Islam, T. Z. (2019). On-node scaling dataset on HPC systems. https://doi.org/10.5281/zenodo.4315003
  • Islam, T. Z., & Phelps, C. (2019, March). PyPerfdump. Retrieved from https://github.com/RECUP-DOE/pyperfdump

2018

  • Thiagarajan, J. J., Anirudh, R., Kailkhura, B., Jain, N., Islam, T. Z., Bhatele, A., … Gamblin, T. (2018). PADDLE: Performance Analysis using a Data-driven Learning Environment (pp. 784--793). IEEE. https://doi.org/10.1109/IPDPS.2018.00088
  • Islam, T. Z., Majeske, N., Jagodzinski, F., & Hutchinson, B. (2018). Low Rank Smoothed Sampling Methods for Identifying Impactful Pairwise Mutations (pp. 681–686). ACM. https://doi.org/https://doi.org/10.1145/3233547.3233714
  • Moody, L., Pinnow, N., Lam, M. O., Menon, H., Schordan, M., Lloyd, G. S., & Islam, T. Z. (2018). Automatic Generation of Mixed-Precision Programs. Retrieved from https://sc18.supercomputing.org/proceedings/tech_poster/tech_poster_pages/post219.html

2017

  • Islam, T. Z., Yu, W., Sato, K., Mohror, K., Zhu, Y., Moody, A., & Wang, T. (2017). MetaKV: A Key-Value Store for Metadata Management of Distributed Burst Buffer (pp. 1174–1183). https://doi.org/10.1109/IPDPS.2017.39
  • Banerjee, T., Hackl, J., Shringarpure, M., Islam, T. Z., Balachandar, S., Jackson, T., & Ranka, S. (2017). A new proxy application for compressible multiphase turbulent flows. Sustainable Computing: Informatics and Systems, 16, 11--24.

2016

  • Islam, T. Z., Banerjee, T., Hackl, J., Shringarpure, M., Balanchandar, S., Jackson, T., & Ranka, S. (2016). CMT-Bone — A Proxy Application for Compressible Multiphase Turbulent Flows (pp. 173–182).
  • Islam, T. Z., Mohror, K., & Schulz, M. (2016). Exploring the Capabilities of the New MPI_T Interface. The International Journal of High Performance Computing Applications (IJHPCA), 30(2), 212--222. https://doi.org/10.1145/2642769.2642781
  • Islam, T. Z., Thiagarajan, J. J., Bhatele, A., Schulz, M., & Gamblin, T. (2016). A Machine Learning Framework for Performance Coverage Analysis of Proxy Applications. In SC16: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE. https://doi.org/10.1109/sc.2016.45
  • Islam, T. Z., Mohror, K., Rountree, B., Schulz, M., Mohror, K., Supinski, B. R., … Sevoie, L. (2016). I/O Aware Power Shifting (pp. 740–749).

2015

  • Fang, A., Laguna, I., Sato, K., Islam, T. Z., & Mohror, K. (2015). Fault Tolerance Assistant (FTA): An Exception Handling Approach for MPI Programs. ExaMPI15 Exascale MPI at Supercomputing 2015 (SC15). IEEE.

2014

  • Ni, X., Kale, L., Islam, T. Z., Mohror, K., & Moody, A. (2014). Lossy Compression for Checkpointing: Fallible or Feasible? ACM/IEEE. Retrieved from http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post271.html
  • Islam, T. Z., Rodgers, G. P., Hacker, T., & Anup, A. (2014). Batchsubmit: A high-volume Batch Submission System for Earthquake Engineering Simulation, 26, 2240–2252.
  • Islam, T. Z., Bagchi, S., & Eigenmann, R. (2014). Reliable and Efficient Distributed Checkpointing System for Grid Environments (Vol. 12, pp. 593–613).
  • Islam, T. Z., Tramn, J., Siegel, A., & Schulz, M. (2014). XSBench-the Development and Verification of a Performance Abstraction for Monte Carlo Reactor Analysis. Retrieved from https://www.mcs.anl.gov/papers/P5064-0114.pdf
  • Islam, T. Z. (2014, May). Gyan: Performance Measurement Tool for MPI implementations. Retrieved from https://github.com/LLNL/mpi-tools
  • Islam, T. Z. (2014). Reliable and Efficient Checkpoint/Recovery in Shared Grid Environments. Journal of Grid Computing, 12, 593--613. https://doi.org/https://doi.org/10.1007/s10723-014-9297-4

2012

  • Islam, T. Z., Mohror, K., Bagchi, S., Moody, A., de Supinski, B. R., & Eigenmann, R. (2012). MCRENGINE: A Scalable Checkpointing System Using Data-Aware Aggregation and Compression (pp. 10--pages). https://doi.org/10.1109/SC.2012.77

2009

  • Islam, T. Z., Bagchi, S., & Eigenmann, R. (2009). FALCON: A System for Reliable Checkpoint Recovery in Shared Grid Environments (pp. 1–12). ACM. https://doi.org/https://doi.org/10.1145/1654059.1654110
  • Hossain, M. S., Islam, T. Z., Bagchi, S., & Raghunathan, V. (2009). Fast and Collaborative Interference Avoidance for Wireless Medical Devices.

2007

  • Islam, T. Z., Hossain, H., Ahmed, M., Al-Nayeem, A., & Akbar, M. M. (2007). gpNoCSim - A General Purpose Simulator for Network-On-Chip (pp. 254–257). IEEE. https://doi.org/10.1109/ICICT.2007.375388