Scholarly and Creative Works
2025
- Hindes, W. M. (2025). On the proportion of irreducible polynomials in unicritically generated semigroups. Journal of Algebra, 677, 394–429. https://doi.org/10.1016/j.jalgebra.2025.04.011
2024
- Hindes, W. M., Healey, V. O., Jones, R., & Doyle, J. R. (2024). Galois groups and prime divisors in random quadratic sequences. Math Proceedings Cambridge Philosophical Society, (176), 95–122.
- Hindes, W. M. (2024). Counting points by height it semigroup orbits. Canadian Journal of Mathematics. https://doi.org/10.4153/S0008414X24000579
- Hindes, W. M. (2024). Dynamical diophantine approximation exponents in charateristic p. Bulletin of the London Mathematical Society, 56, 3801–3818. https://doi.org/10.1112/blms.13168
2023
- Hindes, W. M., Carney, A., & Tucker, T. (2023). Isotriviality, integral points, and primitive primes in orbits in characteristic p. Algebra and Number Theory, 19, 1573–1594.
- Hindes, W. M. (2023). The size of semigroup orbits modulo primes. Pacific Journal of Mathemtics, 325, 281–297. https://doi.org/10.2140/pjm.2023.325.281
- Hindes, W. M. (2023). Irreducible polynomials in quadratic semigroups. Journal of Number Theory, 248, 208–241.
2022
- Hindes, W. M. (2022). Orbit counting in polarized dynamical systems. Discrete and Continuous Dynamical Systems, Series A, 42, 189–210.
- Hindes, W. M. (2022). Counting points of bounded height in monoid orbits. Mathematische Zeitschrift, 301, 3395–3416.
2021
- Hindes, W. M. (2021). Dynamical and arithmetic degrees for random iterations of maps on projective space. Mathematical Proceedings of the Cambridge Philosophical Society, 171, 369–385.
- Hindes, W. M. (2021). Dynamical height growth: left, right, and total orbits. Pacific Journal of Mathematics, 311, 329–367.
2020
- Hindes, W. M. (2020). Eventually stable quadratic polynomials over Q. New York Journal of Math, 26, 526–561.
2019
- Hindes, W. M., & Jones, R. (2019). Riccati equations and polynomial dynamics over function fields. Transactions of the American Mathematical Society, 323, 1555–1575.
- Hindes, W. M. (2019). Finite orbit points for sets of quadratic polynomials. International Journal of Number Theory, 15(8), 1693–1719.
- Hindes, W. M. (2019). The average number of integral points in orbits. Mathematical Research Letters, 26, 101–120.
- Hindes, W. M., & Healey, V. O. (2019). Stochastic Canonical Heights. Journal of Number Theory, 201, 228–256.
2018
- Hindes, W. M. (2018). Average Zsigmondy sets, dynamical Galois groups, and the Kodaira-Spencer map. Transactions of the American Mathematical Society, 370(9), 6391–6410.
- Hindes, W. M. (2018). Classifying Galois groups of small iterates via rational points. International Journal of Jumber Theory, 14(5), 1403–1426.
- Hindes, W. M. (2018). Galois groups of some iterated polynomials over cyclotomic extensions,. Archiv Der Mathematik, 110(2), 109–113.
2017
- Hindes, W. M., & Gunther, J. (2017). Integral points of bounded degree on the projective line and in dynamical orbits. Proceedings American Mathematical Society, 145(12), 5087–5096.
- Hindes, W. M., Bush, M., & Looper, N. (2017). Galois groups of iterates of some unicritical polynomials. Acta Arithmetica, 181(1), 57–73.
- Hindes, W. M. (2017). Integrality estimates in orbits over function fields. Journal of Number Theory, 177, 1–19.
2016
- Hindes, W. M. (2016). Prime divisors in polynomial orbits over function fields. Bulletin of the London Mathematical Society, 48(6), 1029–1036.
2015
- Hindes, W. M. (2015). The Vojta conjecture implies Galois rigidity in dynamical families. Proceedings of the American Mathematical Society, 144, 1931–1939.
- Hindes, W. M. (2015). Rational points on certain families of symmetric equations. International Journal of Number Theory, 11(6), 1821–1838.
- Hindes, W. M. (2015). The Arithmetic of curves defined by iteration. Acta Arithmetica, 169(1), 1–27.
- Hindes, W. M. (2015). Galois uniformity in quadratic dynamics over rational function fields. Journal of Number Theory, 148, 372–383.
2013
- Hindes, W. (2013). Points on elliptic curves parametrizing dynamical Galois groups. Acta Arithmetica, 159(2), 149–167.