Dr. Hwa Young Lee

  • Associate Professor at Mathematics, College of Science & Engineering

Scholarly and Creative Works

2025

  • Lee, H. Y., Warshauer, H. K., Angel, C., & Ford, L. (n.d.). Prospective teachers’ coordination of fractions on number lines and their analyses of student video episodes. In Proceedings of the 15th International Congress of Mathematics Education (ICME 15). Australia.
  • Bui, M. T. T., Lee, H. Y., Hardison, H. L., Paoletti, T., Zolt, H. M., & Rygaard Gaspard, B. R. (n.d.). Students’ arrangements of two number lines when creating a graphical representation: positioning and intersecting strategies. In Proceedings of the 47th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education.
  • Rygaard Gaspard, B. R., Lee, H. Y., Morrell, G. B., Zolt, H. M., Bui, M. T. T., Hardison, H. L., & Paoletti, T. (n.d.). Middle grades students’ interpretations of Cartesian axes labels. In Proceedings of the 47th Annual Meeting of the International Group for the Psychology of Mathematics Education.

2024

  • Zolt, H. M., Rygaard Gaspard, B. R., Lee, H. Y., Paoletti, T., Hardison, H. L., Ford, L. L., … Bui, M. T. T. (2024). Modeling students’ strategies when creating a graph: A focus on reference frames and coordinate systems. In Proceedings of the 46th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 695–701). Retrieved from https://www.pmena.org/pmenaproceedings/PMENA%2046%202024%20Proceedings.pdf#page=710
  • Lee, H. Y. (2024). Researching coordinate systems using genetic epistemology constructs. In Piaget’s genetic epistemology in and for ongoing mathematics education research.
  • Paoletti, T., Gantt, A. L., Lee, H. Y., Hardison, H. L., Rygaard Gaspard, B. R., Olshefke-Clark, A., … Margolis, C. (n.d.). A student’s developing meanings for spatial reference frames and coordinate systems. In Proceedings of the American Educational Research Association.
  • Paoletti, T., Margolis, C., Gantt, A. L., Hardison, H. L., Lee, H. Y., & Olshefke, A. (2024). Supporting learning through interpreting others’ solutions from a radical constructivist perspective: A theoretical report. In Proceedings of the 46th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1640–1645). Retrieved from https://www.pmena.org/pmenaproceedings/PMENA%2046%202024%20Proceedings.pdf#page=1628
  • Olshefke, A. J., Paoletti, T., Margolis, C., Lee, H. Y., Hardison, H. L., & Gantt, A. L. (2024). Students’ meanings for coordinate systems: Continuous and ordered-discrete reference frames. In Proceedings of the 46th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 475–484). Retrieved from https://www.pmena.org/pmenaproceedings/PMENA%2046%202024%20Proceedings.pdf#page=490
  • Olshefke, A., Paoletti, T., Margolis, C., Gantt, A. L., Lee, H. Y., & Hardison, H. L. (2024). Different ways students interpret axes on graphs. In Psychology of Mathematics Education Conference (PME 47) (Vol. 1, p. 198). Retrieved from https://www.igpme.org/wp-content/uploads/2024/07/Vol-1-PME47-01-07-2024.pdf
  • Rygaard Gaspard, B. R., Lee, H. Y., Bui, M. T. T., Hardison, H. L., Paoletti, T., Tarigan, S. I., … Zolt, H. M. (2024). Students’ Reasoning Through Graphing Conventions. In Proceedings of the Psychology of Mathematics Education Conference (PME 47) (Vol. 1, p. 265). Retrieved from https://www.igpme.org/wp-content/uploads/2024/07/Vol-1-PME47-01-07-2024.pdf
  • Rygaard Gaspard, B., Lee, H. Y., Paoletti, T., Tarigan, S., & Ford, L. L. (2024). “It Does Show It Both Ways, Though”: Emma’s Reasoning Through Graphing Conventions.

2023

  • Lee, H. Y. (2023). An analytical framework for making sense of students’ graphical representations with attention to frames of reference and coordinate systems. The Mathematics Enthusiast, 21, 603–632. Retrieved from https://scholarworks.umt.edu/tme/
  • Lee, H. Y., Paoletti, T., Zolt, H. M., Bui, M. T. T., Hardison, H. L., Gantt, A., & Rygaard Gaspard, B. R. (2023). A framework for designing graphing tasks from the ground up. In Proceedings of the 45th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 88–89). Reno, Nevada.
  • Lee, H. Y., & Guajardo, L. (2023). A content analysis of tasks involving two-dimensional Cartesian graphs in grade 6 – 8 U.S. textbooks. Investigations in Mathematics Learning, 3(15), 222–240.

2022

  • Hardison, H. L., Lee, H. Y., Guajardo, L. R., & Bui, M. T. T. (2022). How many angles do you see? Prospective teachers’ assimilatory domains for angularity. In Proceedings of the 44th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 583–591). Retrieved from http://www.pmena.org/pmenaproceedings/PMENA%2044%202022%20Proceedings.pdf
  • Paoletti, T., Hardison, H. L., & Lee, H. Y. (2022). Students’ static and emergent graphical shape thinking in spatial and quantitative coordinate systems. For the Learning of Mathematics, 42(2), 48–50.

2021

  • An, T., Clark, D. L., Lee, H. Y., Miller, E. K., & Weiland, T. (2021). A discussion of programmatic differences within mathematics content courses for prospective elementary teachers. The Mathematics Educator, 30, 52–70.
  • Lee, H. Y. (2021). An algebraic discussion of paper folding. In The Korean Society of Mathematical Education & The Korea Society of Educational Studies in Mathematics Yearbook: School Mathematics and Construction Education (2020th ed., pp. 277–300). South Korea: Kyungmoonsa.
  • Foster, J. K., & Lee, H. Y. (2021). Prospective teachers’ pedagogical considerations of mathematical connections: A framework to motivate attention to and awareness of connections. Mathematics Teacher Education and Development.

2020

  • Paoletti, T., Lee, H. Y., Rahman, Z., Vishnubhotla, M., & Basu, D. (2020). Comparing graphical representations in mathematics, science, and engineering textbooks and practitioner journals. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2020.1847336
  • Lee, H. Y. (2020). Tell me where they are. Mathematics Teacher: Learning and Teaching Pre-K-12, 113(11), e78–e84. https://doi.org/10.5951/MTLT.2019.0125
  • Lee, H. Y., Hardison, H. L., & Paoletti, T. (2020). Foregrounding the Background: Two Uses of Coordinate Systems. For the Learning of Mathematics, 40(2), 32–37.
  • Hardison, H. L., & Lee, H. Y. (2020). Funky Protractors for Exploring Angle Measure. Mathematics Teacher: Learning and Teaching PK-12, 113(3), 229–232. https://doi.org/10.5951/MTLT.2019.0214
  • Hardison, H. L., & Lee, H. Y. (2020). Prospective Teachers’ Strategies for Evaluating Non-Standard Angular Measurement Tools. In Proceedings of the 42nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1615–1619). Mexico. https://doi.org/10.51272/pmena.42.2020-254
  • Hardison, H. L., & Lee, H. Y. (2020). Funky Protractors Created by Prospective Teachers. In Proceedings of the 42nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 731–732). Mazatlan, Mexico. https://doi.org/10.51272/pmena.42.2020-108
  • Lee, H. Y., Hardison, H. L., Kularajan, S. S. K., & Guajardo, L. R. (2020). Establishing a Cartesian coordination in the ant farm task: A case of Ginny. In Proceedings of the 42th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 931–939). Mazatlan, Mexico.
  • Lee, H. Y., & Guajardo, L. R. (2020). An analysis of coordinate systems presented in grade 6-8 textbooks. In Proceedings of the 42th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 423–428). Mazatlan, Mexico.
  • Lee, H. Y. (2020). A measurement lesson leveraging quantitative reasoning for prospective teachers. Journal of Mathematics for Teacher Education in Texas, 10(2), 11–12.
  • Kularajan, S. S. K., Lee, H. Y., & Guajardo, L. R. (n.d.). The Ant Farm task - The case of Ginny. In Proceedings of the XXIII Annual Conference on Research on Undergraduate Mathematics Education (pp. 1222–1223).

2019

  • Lee, H. Y., Moore, K. C., & Tasova, H. I. (2019). Reasoning Within Quantitative Frames of Reference: The Case of Lydia. The Journal of Mathematical Behavior, 53, 81–95.
  • Hardison, H. L., & Lee, H. Y. (2019). Supporting prospective elementary teachers’ non-circular quantifications of angularity. In Proceedings of the 41st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1340–1344). St. Louis, MO: University of Missouri.

2018

  • Lee, H. Y., Hardison, H. L., & Paoletti, T. (2018). Two uses of coordinate systems: A conceptual analysis with pedagogical implications. In T. E. Hodges, G. J. Roy, & A. M. Tyminski (Eds.), 40th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1307–1314). Greenville, SC: University of South Carolina & Clemson University.
  • Paoletti, T., Lee, H. Y., & Hardison, H. L. (2018). Static and emergent thinking in spatial and quantitative coordinate systems. In T. E. Hodges, G. J. Roy, & A. M. Tyminski (Eds.), Proceedings of the 40th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1315–1322). Greenville, SC: University of South Carolina & Clemson University.

2017

  • Lee, H. Y., Tasova, H., & Moore, K. C. (2017). Reasoning within quantitative frames of reference and graphing: The case of Lydia. In E. Galindo & J. Newton (Eds.), Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 753–756). Indianapolis, IN: Hoosier Association of Mathematics Teacher Education.
  • Hardison, H. L., Stevens, I. E., Lee, H. Y., & Moore, K. C. (2017). Lydia’s circle concept: The intersection of figurative thought and covariational reasoning. In Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (p. 391). Indianapolis, IN: Hoosier Association of Mathematics Teacher Educators.
  • Lee, H. Y., & Hardison, H. L. (2017). Motivating the Cartesian plane: Using one point to represent two points. In Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 379–382).
  • Lee, H. Y., & Hardison, H. L. (2017). Foregrounding the background: Two uses of coordinate systems. Abstracts of Papers Presented to the American Mathematical Society, 38(1), 563–564.

2016

  • Lee, H. Y. (2016). Just go straight: Reasoning within spatial frames of reference. In M. B. Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings of the 38th Annual Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 278–281). Tucson, AZ: Arizona State University.
  • Lee, H. Y. (2016). Units coordinating and spatial reasoning in three dimensions. In M. B. Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings of the 38th Annual Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education (p. 303). Tucson, AZ: Arizona State University.
  • Lee, H. Y., & Hardison, H. L. (2016). Spatial coordination as a prerequisite for representing quantitative coordination in two dimensions. In Proceedings of the 38th Annual Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education (p. 304). Tucson, AZ: Arizona State University.

2015

  • Lee, C., & Lee, H. Y. (2015). Student teaching in mathematics education at the secondary level in Korea. In J. Kim, I. Han, M. Park, & J. Lee (Eds.), Mathematics Education in Korea: Contemporary Trends in Researches in Korea (Vol. 2, pp. 37–55). Singapore: World Scientific Publishing Co. Pte. Ltd.
  • Lee, H. Y. (2015, January). The Korean Society of Mathematical Education Newsletter. Korea.

2014

  • Steffe, L. P., Liss II, D. R., & Lee, H. Y. (2014). On the operations that generate intensive quantity. In K. C. Moore, L. P. Steffe, & L. L. Hatfield (Eds.), Epistemic Algebraic Students: Emerging Models of Students’ Algebraic Knowing (Vol. 4, pp. 49–79). Laramie, WY: University of Wyoming: WISDOMe Monographs.

2006

  • Lee, H. Y. (2006). Problem solution of [11139]. The American Mathematical Monthly (8th ed., Vol. 113, p. 764).