Portrait of Dr. Thomas M Keller

Dr. Thomas M Keller

  • Professor at Mathematics, College of Science & Engineering

Scholarly and Creative Works

2025

  • Keller, T. M., & Yang, Y. (2025). Bounding the number of p’-degrees characters from below. Forum Mathematicum, 37, 1545–1549.

2024

  • Keller, T. M., & Moreto, A. (2024). Prime divisors and the number of conjugacy classes of finite groups. Mathematical Proceedings of the Cambridge Philosophical Society, 176(1), 1–16.
  • Huang, Z., Keller, T. M., Kissinger, S., Plotnick, W., Roma, M., & Yang, Y. (2024). A classification of the prime graphs of pseudo-solvable groups. Journal of Group Theory, 27(1), 89–117.
  • Florez, C., Higgins, J., Huang, K., Keller, T. M., & Shen, D. (2024). The adjacency spectra of some families of minimally connected prime graphs. Involve, 17(1), 107–120.
  • Cinarci, B., & Keller, T. M. (2024). A new lower bound for the number of conjugacy classes. Proc. Amer. Math. Soc., 152(9), 3757–3764.
  • Cinarci, B., & Keller, T. M. (2024). The largest orbit sizes of linear group actions and abelian quotients. J. Algebra, 654, 1–24.
  • Edwards, E. J., Keller, T. M., Pesak, R. M., & Sellakumaran Latha, K. (2024). The prime graphs of groups with arithmetically small composition factors. Ann. Mat. Pura Appl. (4), 203(2), 945–973.
  • Cinarci, B., & Keller, T. M. (2024). Linear group actions with at most three orbits of the largest size. Monatshefte Fur Mathematik, 203(2), 313–322. https://doi.org/10.1007/s00605-023-01850-1

2023

  • Keller, T. M., & Yang, Y. (2023). Regular and p-regular orbits of solvable linear groups, II. Algebra Colloquium, 30, 301–304.
  • Keller, T. M., Lv, H., Qian, G., & Yang, D. (2023). Minimal orbit sizes in nilpotent group actions. Journal of Algebra and Its Applications, 22(7).
  • Harrison, T., Keller, T. M., & Rice, J. A. (2023). Groups with a large conjugacy class relative to a normal subgroup. Houston Journal of Mathematics, 49(1), 77–86.
  • Belloti, C., Keller, T. M., & Trudgian, T. S. (2023). New bounds for numbers of primes in element orders of finite groups. Mathematische Nachrichten, 296(11), 5227–5231.

2022

  • Gintz, M., Keller, T., Kortje, M., Wang, Z., & Yang, Y. (2022). The number of set orbits of permutation groups and the group order. Bulletin of the Australian Mathematical Society, 106, 89–101.
  • Florez, C., Higgins, J., Huang, K., Keller, T., Shen, D., & Yang, Y. (2022). On the prime graphs of several classes of finite groups. Journal of Pure and Applied Algebra, 226, 106990.
  • Keller, T. M., & Pohlman, A. L. (2022). Orbit sizes and the central product group of order 16. Annali Di Matematica Pura Ed Applicata, 201(4), 1965–1991.

2021

  • Hung, N. N., Keller, T. M., & Yang, Y. (2021). A lower bound for the number of odd-degree representations of a finite group. Mathematische Zeitschrift, 298, 1559–1572.
  • Betz, A., Chao-Haft, M., Gong, T., Keller, T. M., Ter-Saakov, A., & Yang, Y. (2021). Finite permutation groups with few orbits under the action on the power set. Rocky Mountain J. Math., 51(5), 1553–1565.
  • Keller, T. M., & Moreto, A. (2021). Character degrees, conjugacy class sizes, and element orders: three primes. Arch. Math. (Basel), 117, 241–251.

2020

  • Jones, N. A., & Keller, T. M. (2020). Orbit sizes and the dihedral group of order eight. Ann. Mat. Pura Appl. (4), 199, 2323–2340.
  • Keller, T. M., & Yang, Y. (2020). Abelian quotients and orbit sizes of linear groups. Sci. China Math., 63, 1523–1534.

2018

  • Keller, T. M., & Yang, Y. (2018). Class 2 quotients of solvable linear groups. Journal of Algebra, 509, 386–396.
  • Keller, T. M., Turull, A., & Wolf, T. R. (2018). Direct products of groups and regular orbits. Journal of Algebra, 494, 137–141.

2016

  • Keller, T. M., & Yang, Y. (2016). Abelian quotients and orbit sizes of solvable linear groups. Israel Journal of Mathematics, 211, 23–44.

2015

  • Keller, T. M. (2015). A combinatorial problem arising in group theory. Australas. J. Combin., 61, 175–181.
  • Keller, T. M., & Yang, Y. (2015). On nilpotent and solvable quotients of primitive groups. J. Group Theory, 18, 553–563.
  • Keller, T. M., Gruber, A., Lewis, M. L., Naughton, K. A., & Strasser, B. (2015). A Characterization of the Prime Graphs of Solvable Groups. J. Algebra, 442, 397–422.

2014

  • Keller, T. M., & Yang, Y. (2014). Orbits of finite solvable groups on characters. Israel J. Math, 199, 933–940.
  • Keller, T. M., & Yang, Y. (2014). Regular and p-regular orbits of solvable linear groups. J. Algebra, 398, 509–518.

2011

  • Keller, T. M. (2011). Finite groups have even more conjugacy classes. Israel J. Math, 181, 433–444.
  • Keller, T. M., Hethelyi, L., Horvath, E., & Maroti, A. (2011). Groups with few conjugacy classes. Proc. Edinb. Math. Soc., 54(2), 423–430.

2010

  • Keller, T. M. (2010). Gaps in character degrees for groups with many conjugacy classes. In Character Theory of Finite Groups, Contemporary Mathematics (Vol. 524, pp. 83–92). Providence, RI.

2009

  • Keller, T. M. (2009). Lower bounds for the number of conjugacy classes of finite groups. Math. Proc. Cambridge Philos. Soc., 147, 567–577.
  • Keller, T. M. (2009). Counting characters in linear group actions. Israel J. Math, 171, 367–384.

2006

  • Keller, T. M. (2006). Fixed conjugacy classes of normal subgroups and the k(GV)-problem. J. Algebra, 305, 457–486.
  • Keller, T. M., Isaacs, I. M., Meierfrankenfeld, U., & Moreto, A. (2006). Fixed point spaces, primitive character degrees, and conjugacy class sizes. Proc. Amer. Math. Soc., 134, 3123–3130.
  • Keller, T. M., Isaacs, I. M., Lewis, M. L., & Moreto, A. (2006). Transitive permutation groups in which all derangements are involutions. J. Pure Appl. Algebra, 207, 717–724.
  • Keller, T. M. (2006). Derived length and conjugacy class sizes. Adv. Math, 199, 88–103.
  • Keller, T. M. (2006). Inductive arguments for the non--coprime k(GV)--problem. Algebra Colloq, 13, 35–39.
  • Keller, T. M., Ragan, D., & Tims, G. T. (2006). On the Taketa bound for normally monomial p-groups of maximal class. J. Algebra, 277, 675–688.

2005

  • Keller, T. M. (2005). The k(GV)-problem revisited. J. Austral. Math. Soc., 79, 257–276.

2003

  • Keller, T. M. (2003). A new approach to the k(GV)-problem. J. Austral. Math. Soc., 75, 193–219.
  • Keller, T. M. (2003). Orbits in finite group actions, Mathematical Society Lecture Notes Series. Cambridge University Press (Vol. 305, pp. 306–331).

2002

  • Keller, T. M. (2002). Orbit sizes and character degrees, III. J. Reine Angew. Math., 545, 1–17.

2000

  • Keller, T. M. (2000). On the orbit sizes of permutation groups on the power set. Algebra Colloq., 7, 27–32.

1999

  • Keller, T. M. (1999). Orbit sizes and character degrees, II. J. Reine Angew. Math., 516, 27–114.
  • Keller, T. M. (1999). Orbit sizes and character degrees. Pacific J. Math, 187, 317–332.

1997

  • Keller, T. M. (1997). On the asymptotic Taketa bound for A-groups. J. Algebra, 191, 127–140.

1995

  • Keller, T. M. (1995). Group order and element orders in solvable groups, Berichte aus der Mathematik. Aachen, Germany: Shaker Verlag.
  • Keller, T. M. (1995). A linear bound for ?(n). J. Algebra, 178, 643–652.
  • Keller, T. M. (1995). Solvable groups with at most four prime divisors in the element orders. J. Algebra, 175, 1–23.
  • Keller, T. M. (1995). On the asymptotic behaviour of ?(n). J. Algebra, 174, 587–598.

1994

  • Keller, T. M. (1994). Solvable groups with a small number of prime divisors in the element orders. J. Algebra, 170, 625–648.

1925

  • Keller, T. M., & Yang, Y. (1925). Abelian quotients and orbit sizes of solvable linear groups. Israel J. Math.