Dr. Julio G Dix

  • Professor at Mathematics, College of Science & Engineering

Scholarly and Creative Works

2023

  • Dix, J. G., & Wu, H. (2023). Another improvement on oscillation criteria for first-order delay differential equations. Journal of Applied Analysis and Computation, 13(3), 1421–1428.

2022

  • Dix, J. G., Kilic, N., & Ocalan, O. (2022). Oscillation criteria for first-order differential equations with several delays. Filomat, 36(16), 5665–5675. Retrieved from https://doi.org/10.2298/FIL2216665D

2021

  • Dix, J. G. (2021). Improved oscillation criteria for first-order delay differential equations  with variable delay. Electronic Journal of Differential Equations, 2021, 1–12. Retrieved from http://ejde.math.txstate.edu

2020

  • Santra, S. S., & Dix, J. G. (2020). Necessary and sufficient conditions for the oscillation of solutions to a second-order neutral differential equation with impulses. Nonlinear Studies, 27, 375–387.

2019

  • Wu, H., & Dix, J. G. (2019). Oscillation of nabla difference equations with several delay arguents. International Journal of Difference Equations, 14(2), 179–194. Retrieved from http://campus.mst.edu/ijde
  • Wu, H., & Dix, J. G. (2019). Oscillation criterion for first-order linear differential equations with several delay arguments. Arab Journal of Mathematical Science, 25(1), 43–56. https://doi.org/10.1016/j.ajmsc.2018.02.003

2018

  • Chatzarakis, G. E., & Dix, J. G. (2018). Oscillation of nonlinear difference equations with deviating arguments. Mathematica Bohemica, 143(1), 67–87. https://doi.org/10.21136/MB.2017.0055-16
  • Dix, J. G. (2018). Sufficient conditions for the existence of non-oscillatory solutions to first-order differential equations with multiple advanced arguments. Electronic Journal of Differential Equations, 2018(177), 1–9. Retrieved from ejde.math.txstate.edu
  • Santra, S. S., Pinelas, S., & Dix, J. G. (2018). Necessary and sufficient conditions for the oscillation of solutions to second-order nonlinear equations with several delays. Retrieved from www.gpcpublishing.org/wp

2017

  • Pinelas, S., & Dix, julio G. (2017). Oscillation of solutions to non-linear difference equations with several adbvanced arguments. Opuscula Mathematica, 37(6), 887–898. https://doi.org/10.7494/OpMath.2017.37.6.887
  • Pinelas, S., & Dix, J. G. (2017). Oscillation of solutions to non-linear difference equatoins with several advanced arguments. Opuscula Mathematica, 37, 887–898. https://doi.org/10.7494.OpMath.2017.37.6.887

2016

  • Dix, J. P., & Dix, J. G. (2016). Oscillation of solutions to nonlinear first-order delay differential equations. Involve, 9, 465–482.

2015

  • Dix, J. G., Spanikova, E., & Samajova, H. (2015). Asymptotic properties of solutions to a nonlinear system of neutral differential equations. Differential Equations & Applications, 7(1), 1—13. https://doi.org/10.7153/dea-07-01

2014

  • Ding, H., & Dix, J. G. (2014). Multiple Periodic Solutions for Discrete Nicholson’s Blowflies Type System. Abstract and Applied Analysis, 2014. https://doi.org/10.1155/2014/659152
  • Dix, julio G. (2014). Oscillation of solutions to a neutral differential equation involving an n-order operator with variable coefficients and a forcing term. Differ. Equ. Dynamic Systems, 22(1), 15–31.
  • Padhi, S., Dix, J. G., & Pati, S. (2014). Global attractivity of solutions of first-order delay differential equations with applications population dynamics. Dynamic Systems and Applications, 23(2–3), 375--390.

2013

  • Dix, julio G., Samajova, H., & Spanikova, E. (2013). Decay of non-oscillatory solutions for a system of neutral  differential equations. Electron. J. Diff. Equ, 2013(271), 1–11.
  • Dix, J. G. (2013). Existence of non-oscillatory solutions for nonlinear differential  equations with distributed delays and m-order linear operators  with variable coefficients. J. Nonl. Evol. Equ. Appl, 2012(9), 113–128.

2011

  • Dix, J. G., Karpuz, B., & Rath, R. N. (2011). Necessary and sufficient conditions for the oscillation of higher-order  differential equations involving distributed delays. E. J. Qualitative Theory of Diff. Equ, 19, 1–15.

2010

  • Dix, J. G., & Padhi, S. (2010). Existence of multiple positive periodic solutions for delay differential equation whose order is a multiple of 4. Applied Mathematics and Computation, 216.
  • Dix, J. G. (2010). Oscillation of solutions to a higher-order neutral PDE with distributed deviating arguments. Electron. J. Qual. Theory Differ. Equ., 2010, 1–14.
  • Dix, J. G., Padhi, S., & Pati, S. (2010). Multiple positive periodic solutions for a nonlinear first order functional difference equation. Journal of Difference Equations and  Applications, 16(9).

2009

  • Padhi, S., Srivastava, S., & Dix, julio G. (2009). Existence of three nonnegative periodic solutions for  functional differential equations and applications  to hematopoiesis. PanAmerican Mathematical Journal, 19(1), 27--36.
  • Dix, julio G., Ghose, D. K., & Rath, R. (2009). Oscillation  of a higher order neutral differential equation with a sub-linear delay term and positive and negative coefficients. Mathematica Bohoemica, 134(4), 411–425.
  • Dix, J. G., & Karakostas, G. L. (2009). A fixed-point theorem for S-type operators on Banach spaces and its applications to boundary-value problems. Nonlinear Analysis T.M.A., 17, 3872–3880.

2008

  • Dix, J. G., & Terrero-Escalante, C. A. (2008). Stability of solutions to damped equations with negative stiffness. International Journal of Pure and Applied Mathematics, 48(3), 301–314.
  • Dix, J. G., Misra, N., Padhy, L., & Rath, R. (2008). Oscillatory and asymptotic behaviour of a neutral differential equation with oscillating coefficients. Theory of Differential Equations, 2008(19), 1–10.
  • Dix, J. G., & Padhi, S. (2008). Oscillation of functional differential  equations of n-th order with distributed deviating arguments. Journal of Contemporary Mathematics, 1, 11–24.

2007

  • Dix, J. G., Rath, R. N., Barik, B. L. S., & Dihudi, B. (2007). Necessary Conditions for the Solutions of Second Order Non-linear  Neutral Delay Difference Equations to Be Oscillatory or Tend to Zero. International Journal of Mathematics and Mathematical Sciences, 2007.

2006

  • Dix, J. G., Philos, C. G., & Purnaras, I. K. (2006). Asymptotic properties of solutions to linear non-autonomous neutral  differential equations. Journal of Mathematical  Analysis and Applications, 318(1), 296–304.

2005

  • Dix, J. G. (2005). Asymptotic behavior of solutions to a first-order differential equation with variable delays. Computers and Mathematics with Applications, 50, 1791–1800.
  • Dix, J. G., Philos, C. G., & Purnaras, I. K. (2005). An asymptotic property of solutions to linear nonautonomous delay differential equations. Electron. J. Diff. Equations, 2005(10), 1–9.

2004

  • Dix, J. G., & Lippmann, D. (2004). [Review of Possible mechanism for large enantiomeric excess, by G. Gyula Palyi, C. Zucchi, & L. Caglioti]. Progress in Biological Chirality, 173, 179.
  • Dix, J. G. (2004). Some aspects of running a free electronic journal. The Electronic Library of Mathematics: New Developments in Electronic Publishing.

2002

  • Dix, J. G., & Castro, A. (2002). Ten Years of the Electronic Journal of Differential  Equations. J. Math. Phys. Sci, 1(1), 5–7.

1999

  • Dix, julio G., & Lippmann, D. (1999). [Review of Possible mechanism for spontaneous production of enantiomeric Excess, by G. Palyi & C. Zucchi]. Advances in Biochirality, 85--98.

1998

  • Dix, J. G. (1998). Infinite frequency solutions to discontinuous control systems with variable delay. Israel J. of Math, 106(165--176).
  • Bourgeois, E., Cohen, P., Dix, julio G., & Natesan, C. (1998). Faculty-determined allocation formula at Southwest  Texas State University. Collection Management, 23(1–2), 113--123.
  • Dix, J. G. (1998). Decay of solutions of a degenerate hyperbolic equation. Electron. J. Differential Equations, 1998, 1–10.

1995

  • Dix, J. G. (1995). Behavior of solutions to an integral equation in one dimensional packing problems. Mathematica Japonica, 42(1), 113--120.

1994

  • Dix, J. G., & Ogden, R. D. (1994). An interpolation scheme with radial basis in Sobolev spaces $H^s(R^n)$}. Rocky Mountain Journal of Math, 24, 1319--1337.

1993

  • Dix, J. G., & Torrejon, R. (1993). Local solution for a degenerate hyperbolic equation with memory. Journal of  Nonlinear Analysis,  Theory Methods and Applications, 23(2), 225--237.

1990

  • Dix, J. G., & McCabe, T. (1990). On finding equilibria for isotropic hyperelastic materials. Journal of  Nonlinear Analysis, Theory Methods and Applications, 15(5), 437--444.
  • Dix, J. G. (1990). A parameter choice for simplified regularization. Rostocker Math. Kolloquium Schriftleintung, 42, 59--68.
  • McCabe, T. W., & Dix, J. G. (1990). “On Finding Equilibria for Isotropic Hyperelastic Materials.” Non-Linear Analysis Theory, Methods and Applications, 15, 437–474.

1988

  • Dix, J. G., & Ogden, R. D. (1988). On condition numbers and convergence of the alternating  projections method. Houston Journal of Mathematics, 14(2), 209--217.
  • Dix, J. G. (1988). An optimal parameter choice for regularized ill-posed  problems. Journal of Integral Equations and Operator Theory, 11, 610–613.
  • Dix, J. G. (1988). On simplified regularization. Journal of  Optimization Theory and Applications, 58, 133–138.
  • Dix, J. G. (1988). On optimal convergence for regularized Tikhonov  approximations. Journal of Optimization Theory and Applications, 58, 127–131.

1987

  • Groetsch, C. W., & Dix, J. G. (1987). Arcangeli’s method for Fredholm equations of the first  kind. Proceedings of the American Mathematical Society, 99, 256–261.

1986

  • Dix, J. G. (1986). Finite dimensional simplified regularization. Rostocker Mathematisches Koloquium Schriftleintung, 30, 113–120.

1985

  • Dix, J. G. (1985). Weak approximation of minimal norm solutions of first kind  equations by Tikhonov’s method. Revista Colombiana de Matematicas, 19, 263–276.
  • Groetsch, C. W., & Dix, J. G. (1985). Regularized Ritz approximations for Fredholm equations  of the first kind. Rocky Mountain Journal of Mathematics, 15, 33--37.

1984

  • Dix, J. G. (1984). Aspects of the Theory of Tikhonov’s Method for the  Numerical Solution of Integral Equations. University of  Cincinnati.