Dr. Junseo Choi

  • Assistant Professor at Department of Engineering Technology, College of Science & Engineering

Scholarly and Creative Works

2025

  • Shivanka, S., Shiri, F., Chibuike, M., McKinney, C., Verber, M., Choi, J., … Soper, S. (2025). Insights on Using Plastic-Based Dual In-Plane Nanopore Sensors for Differentiation and Shape Determinations of Single Protein Molecules. Sci. Rep., 15, 13742. https://doi.org/http://doi.org/10.1038/s41598-025-96232-y
  • Chibuike, M., Rathnayaka, C., Shivanka, S., Choi, J., Verber, M., Park, S., & Soper, S. (2025). Millisecond Label-Free Single Peptide Detection and Identification Using Nanoscale Electrochromatography and Resistive Pulse Sensing. Anal. Chem., 97(1), 427–435. https://doi.org/http://doi.org/10.1021/acs.analchem.4c04542

2024

  • Nguyen, H., Shiri, F., Verber, M., McKinney, C., Choi, J., Park, S., … Soper, S. (2024). Single-Capsid Identification of Full and Empty Status of Recombinant Adeno-Associated Viruses via Resistive Pulse Sensing. Sens. Actuator Rep., 8, 100242. https://doi.org/http://doi.org/10.1016/j.snr.2024.100242
  • Rathnayaka, C., Chandrosoma, I., Choi, J., Childers, K., Chibuike, M., Akabirov, K., … Soper, S. (2024). Detection and Identification of Single Ribonucleotide Monophosphates Using a Dual In-Plane Nanopore Sensor Made from a Thermoplastic via Replication. Lab Chip, 24(10), 2721–2735. https://doi.org/https://doi.org/10.1039/D3LC01062G

2023

  • Wu, J., Choi, J., Uba, F., Soper, S., & Park, S. (2023). Engineering Inlet Structures to Enhance DNA Capture into Nanochannels in as Polymer Nanofluidic Device Produced via Nanoimprint Lithography. Micro. Nano. Eng., 21, 100230. https://doi.org/https://doi.org/10.1016/j.mne.2023.100230
  • Shiri, F., Choi, J., Vietz, C., Rathnayaka, C., Manoharan, A., Shivanka, S., … Park, S. (2023). Nano-Injection Molding with Resin Mold Inserts for Prototyping of Nanofluidic Devices for Single Molecular Detection. Lab Chip, 23(22), 4876–4887. https://doi.org/https://doi.org/10.1039/D3LC00543G
  • Vaidyanathan, S., Wijerathne, H., Gamage, S., Shiri, F., Zhao, Z., Choi, J., … Soper, S. (2023). High Sensitivity Extended Nano-Coulter Counter for Detection of Viral Particles and Extracellular Vesicles. Anal. Chem., 95(26), 9892–9900. https://doi.org/https://doi.org/10.1021/acs.analchem.3c00855

2022

  • Zhao, Z., Vaidyanathan, S., Bhanja, P., Gamage, S., Saha, S., McKinney, C., … Soper, S. (2022). In-plane Extended Nano-coulter Counter (XnCC) for the Label-Free Electrical Detection of Biological Particles. Electroanalysis, 34(12), 1961–1975. https://doi.org/https://doi.org/10.1002/elan.202200091
  • Jia, Z., Choi, J., Lee, S., Soper, S., & Park, S. (2022). Modifying Surface Charge Density of Thermoplastic Nanofluidic Biosensors by Multivalent Cations within the Slip Plane of the Electric Double Layer. Colloid Surf. A-Physicochem. Eng. Asp., 648, 129147. https://doi.org/https://doi.org/10.1016/j.colsurfa.2022.129147
  • Gamage, S., Pahattuge, T., Wijerathne, H., Childers, K., Vaidyanathan, S., Athapattu, U., … Soper, S. (2022). Microfluidic Affinity Selection of Active SARS-CoV-2 Virus Particles. Sci. Adv., 8(39), eabn9665. https://doi.org/https://doi.org/10.1126/sciadv.abn9665
  • Vaidyanathan, S., Gamage, S., Dathathreya, K., Kryk, R., Manoharan, A., Zhao, Z., … Soper, S. (2022). Fluidic Operation of a Polymer-based Nanosensor Chip for Analyzing Single Molecules. Flow, 2, E14. https://doi.org/https://doi.org/10.1017/flo.2022.8

2021

  • Choi, J., Jia, Z., Riahipour, R., McKinney, C., Amarasekara, C., Weerakoon-Ratnayake, K., … Park, S. (2021). Label Free Identification of Sigle Mononucleotides by Nanoscale Electrophoresis. Small, 17(42), 2102567. https://doi.org/https://doi.org/10.1002/smll.202102567
  • Athapattu, U., Rathnayaka, C., Vaidyanathan, S., Gamage, S., Choi, J., Riahipour, R., … Soper, S. (2021). Tailoring Thermoplastic In-Plane Nanopore Size by Thermal Fusion Bonding for the Analysis of Single Molecules. ACS Sens., 6(8), 3133–3143. https://doi.org/https://doi.org/10.1021/acssensors.1c01359
  • Vaidyanathan, S., Weerakoon-Ratnayake, K., Uba, F., Hu, B., Kaufman, D., Choi, J., … Soper, S. (2021). Thermoplastic Nanofluidic Devices for Identifying Abasic Sites in Single DNA Molecules. Lab Chip, 21(8), 1579–1589. https://doi.org/https://doi.org/10.1039/D0LC01038c
  • Zhao, X., Park, D., Choi, J., Park, S., Soper, S., & Murphy, M. (2021). Flexible-templated Imprinting for Fluorine-free, Omniphobic Plastics with Re-entrant Structures. J. Colloid Interface Sci., 585, 668–675. https://doi.org/https://doi.org/10.1016/j.jcis.2020.10.046
  • Amarasekara, C., Rathnayaka, C., Athapattu, U., Zhang, L., Choi, J., Park, S., … Soper, S. (2021). Electrokinetic Identification of Ribonucleotide Monophosphates (rNMPs) Using Thermoplastic Nanochannels. J. Chromatogr. A, 1638, 461892. https://doi.org/https://doi.org/10.1016/j.chroma.2021.461892

2020

  • Amarasekara, C., Athapattu, U., Rathnayaka, C., Choi, J., Park, S., & Soper, S. (2020). Open-tubular Nanoelectrochromatography (OT-NEC): Gel-free Separation of Single Stranded DNAs (ssDNAs) in Thermoplastic Nanochannels. Electrophoresis, 41(18–19), 1627–1640. https://doi.org/https://doi.org/10.1002/elps.202000109
  • Zhao, X., Park, D., Choi, J., Park, S., Soper, S., & Murphy, M. (2020). Robust, Transparent, Superhydrophobic Coatings Using Novel Hydrophobic/Hydrophilic Dual-sized Silica Particles. J. Colloid Interface Sci., 574, 347–354. https://doi.org/https://doi.org/10.1016/j.jcis.2020.04.065
  • Zhang, B., Dodaran, M., Shao, S., Choi, J., Park, S., & Meng, W. J. (2020). Understanding of Plasticity Size-Effect Governed Mechanical Response and Incomplete Die Filling in a Microscale Double-Punch Molding Configuration. Int. J. Mech. Sci., 172, 105406. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2019.105406

2019

  • Prasada, A., Choi, J., Jia, Z., Park, S., & Gartia, M. (2019). Nanohole Array Plasmonic Biosensors: Emerging Point-of-Care Applications. Biosens. Bioelectron., 130. https://doi.org/https://doi.org/10.1016/j.bios.2019.01.037
  • Choi, J., Lee, C., & Sunggook. (2019). Scalable Fabrication of Sub-10 nm Polymer Nanopores for DNA Analysis. Microsyst. Nanoeng., 5, 12. https://doi.org/https://doi.org/10.1038/s41378-019-0050-9

2018

  • Choi, J., Jia, Z., & Park, S. (2018). Fabrication of Polymeric Dual-Scale Nanoimprint Molds Using a Polymer Stencil Membrane. Microelectron. Eng., 199, 101–105. https://doi.org/https://doi.org/10.1016/j.mee.2018.07.009
  • Jia, Z., Choi, J., & Park, S. (2018). Surface Charge Density-Dependent of DNA Capture through Polymer Planar Nanopores. ACS Appl. Mater. Interfaces, 10(47), 40927–40937. https://doi.org/https://doi.org/10.1021/acsami.8b14423
  • Jia, Z., Choi, J., & Park, S. (2018). Selection of UV-Resins for Nanostructured Molds for Thermal NIL. Nanotechnology, 29(36), 365302. https://doi.org/https://doi.org/10.1088/1361-6528/aacd33
  • Beheshti, M., Choi, J., Geng, X., Podlaha-Murphy, E., & Park, S. (2018). Patterned Electromagnetic Alignment of Magnetic Nanowires. Microelectron. Eng., 193, 71–78. https://doi.org/https://doi.org/10.1016/j.mee.2018.02.021

2017

  • Farshchian, B., Amirsadeghi, A., Choi, J., Park, D., Kim, N., & Park, S. (2017). 3D Nanomolding and Fluid Mixing in Micromixers with Micro-Patterned Microchannel Walls. Nano Converg., 4, 4. https://doi.org/https://doi.org/10.1186/s40580-017-0098-x
  • Amirsadeghi, A., Brumfield, L., Choi, J., Brown, E., Lee, J. J., & Park, S. (2017). The Role of Hydrophobic Silane Coating on Si Stamps in Nanoimprint Lithography. J. Appl. Phys., 121(4), 044909. https://doi.org/https://doi.org/10.1063/1.4974533

2016

  • Ok, J. T., Choi, J., Brown, E., & Park, S. (2016). Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets. Microelectron. Eng., 158, 130–134. https://doi.org/https://doi.org/10.1016/j.mee.2016.04.018

2013

  • Choi, J., Farshchian, B., Kim, J., & Park, S. (2013). Fabrication of Perforated Micro/Nanopore Membranes via Combination of Nanoimprint Lithography and Pressed Self-Perfection Process for Size Reduction. J. Nanosci. Nanotechnol., 13(6), 4129–4133. https://doi.org/https://doi.org/10.1166/jnn.2013.7016
  • Hurst, S., Farshchian, B., Brumfield, L., Ok, J. T., Choi, J., Kim, J., & Park, S. (2013). Low Cost Fabrication of a Superhydrophobic V-Grooved Polymer Surface. J. Nanosci. Nanotechnol., 13(3), 1884–1887. https://doi.org/https://doi.org/10.1166/jnn.2013.6973

2012

  • Farshchian, B., Park, S., Choi, J., Amirsadeghi, A., Lee, J., & Park, S. (2012). 3D Nanomolding for Lab-on-a-Chip Applications. Lab Chip, 12(22), 4764–4771. https://doi.org/https://doi.org/10.1039/C2LC40572E
  • Hurst, S., Farshchian, B., Choi, J., Kim, J., & Park, S. (2012). A Universally Applicable Method for Fabricating Superhydrophobic Polymer Surfaces. Colloid Surf. A-Physicochem. Eng. Asp., 407, 85–90. https://doi.org/https://doi.org/10.1016/j.colsurfa.2012.05.012

2010

  • Choi, J., Roychowdhury, A., Kim, N., Nikitopoulos, D., Lee, W., Han, H., & Park, S. (2010). A Microfluidic Platform with a Free-Standing, Perforated Polymer Membrane. J. Micromech. Microeng., 20(8), 085011. https://doi.org/https://doi.org/10.1088/0960-1317/20/8/085011

2008

  • Song, Z., Choi, J., You, B. H., Lee, J., & Park, S. (2008). Simulation Study on Stress and Deformation of Polymeric Patterns During the Demolding Process in Thermal Imprint Lithography. J. Vac. Sci. Technol. B, 26(2), 598–605. https://doi.org/https://doi.org/10.1116/1.2890693
  • Choi, J., Kim, J., Yoo, K. S., & Lee, T. G. (2008). Synthesis of Mesoporous TiO2/γ-Al2O3 Composite Granules with Different Sol Composition and Calcination Temperature. Powder Technol., 181(1), 83–88. https://doi.org/https://doi.org/10.1016/j.powtec.2007.06.022

2007

  • Choi, J., Ban, J.-Y., Choung, S.-J., Kim, J., Abimanyu, H., & Yoo, K. S. (2007). Sol-Gel Synthesis, Characterization and Photocatalytic Activity of Mesoporous TiO2/γ-Al2O3 Granules. J. Sol-Gel Sci. Technol., 44(1), 21–28. https://doi.org/https://doi.org/10.1007/s10971-007-1592-0

2006

  • Choi, J., Kim, B., & Kim, J. (2006). Structural Evolution of Sol–Gel Derived Nanostructured Alumina Granules with Calcination Temperature. J. Chem. Eng. Jpn., 39(9), 1000–1003. https://doi.org/https://doi.org/10.1252/jcej.39.1000