Portrait of Veronica Perez-Rosas

Veronica Perez-Rosas

  • Assistant Professor at Computer Science, College of Science & Engineering

Scholarly and Creative Works

2024

  • Min, D. J., Perez-Rosas, V., Resnicow, K., & Mihalcea, R. (2024). Dynamic Reward Adjustment in Multi-Reward Reinforcement Learning for Counselor Reflection Generation. LREC-COLING 2024.
  • Ignat, O., Jin, Z., Abzaliev, A., Biester, L., Castro, S., Deng, N., … Mihalcea, R. (2024). Has It All Been Solved? Open NLP Research Questions Not Solved by Large Language Models. To Appear in LREC-COLING 2024.
  • Mihalcea, R., Biester, L., Boyd, R. L., Jin, Z., Perez-Rosas, V., Wilson, S., & Pennebaker, J. W. (2024). How developments in natural language processing help us in understanding human behaviour. Nature Human Behaviour, 8(10), 1877–1889. https://doi.org/10.1038/s41562-024-01938-0
  • Min, D. J., Perez-Rosas, V., Resnicow, K., & Mihalcea, R. (2024). Evaluating Language Models for Assessing Counselor Reflections. ACM Transactions on Computing for Healthcare. https://doi.org/10.1145/3709364

2023

  • Gunal, A., Stewart, I., Mihalcea, R., & Perez-Rosas, V. (2023). Understanding the Role of Questions in Mental Health Support-Seeking Forums. In Health Intelligence Workshop at AAAI 2023.
  • Kazemi, A., Abzaliev, A., Deng, N., Hou, R., Liang, D., Hale, S. A., … Mihalcea, R. (2023). Adaptable Claim Rewriting with Offline Reinforcement Learning for Effective Misinformation Discovery. IJCNLP-AACL 2023: The 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics.
  • Wexler, D. J., de Boer, I. H., Ghosh, A., Younes, N., Bebu, I., Inzucchi, S. E., … others. (2023). Comparative Effects of Glucose-Lowering Medications on Kidney Outcomes in Type 2 Diabetes: The GRADE Randomized Clinical Trial. JAMA Internal Medicine.
  • Min, D. J., Perez-Rosas, V., Resnicow, K., & Mihalcea, R. (2023). VERVE: Template-based Reflective Rewriting for Motivational Interviewing. In Accepted for publication at the Findings of Empirical Methods in Natural Language Processing.
  • Min, D. J., Perez-Rosas, V., & Mihalcea, R. (2023). Navigating Data Scarcity: Pretraining for Medical Utterance Classification. In T. Naumann, A. Ben Abacha, S. Bethard, K. Roberts, & A. Rumshisky (Eds.), Proceedings of the 5th Clinical Natural Language Processing Workshop (pp. 59--68). Toronto, Canada: Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.clinicalnlp-1.8

2022

  • Min, D. J., Perez-Rosas, V., Resnicow, K., & Mihalcea, R. (2022). PAIR: Prompt-Aware margIn Ranking for Counselor Reflection Scoring in Motivational Interviewing. In Conference on Empirical Methods in Natural Language Processing.
  • Alberto Castro-Hern\’andez, Ver\’onica P\’erez-Rosas, & Swigger, K. M. (2022). Effect of Temporal Patterns on Task Cohesion in Global Software Development Teams. Computaci\’on y Sistemas, 26(2). Retrieved from https://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/4256
  • Kazemi, A., Li, Z., Perez-Rosas, V., Hale, S. A., & Mihalcea, R. (2022). Matching Tweets With Applicable Fact-Checks Across Languages. De-Factify Workshop at AAAI 2022.
  • \cSen, M. Umut, Perez-Rosas, V., Yanikoglu, B., Abouelenien, M., Burzo, M., & Mihalcea, R. (2022). Multimodal Deception Detection Using Real-Life Trial Data. IEEE Transactions on Affective Computing, 13(1), 306--319. https://doi.org/10.1109/TAFFC.2020.3015684
  • Castro Hernandez, A., Perez-Rosas, V., & Swigger, K. (2022). Effect of temporal patterns on task cohesion in global software development teams. Computaci\’on y Sistemas, 26(2), 867--873.
  • Shen, S., Perez-Rosas, V., Welch, C., Poria, S., & Mihalcea, R. (2022). Knowledge Enhanced Reflection Generation for Counseling Dialogues. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 3096--3107). Dublin, Ireland: Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.acl-long.221
  • Welch, C., Gu, C., Kummerfeld, J. K., Perez-Rosas, V., & Mihalcea, R. (2022). Leveraging Similar Users for Personalized Language Modeling with Limited Data. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1742--1752). Dublin, Ireland: Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.acl-long.122

2021

  • Xu, A. J., Myrie, A., Taylor, J. I., Matulewicz, R., Gao, T., Perez-Rosas, V., … Loeb, S. (2021). Instagram and prostate cancer: using validated instruments to assess the quality of information on social media. Prostate Cancer and Prostatic Diseases, 1--3.
  • Loeb, S., Mihalcea, R., Perez-Rosas, V., Xu, A., Taylor, J., Byrne, N., … others. (2021). Leveraging social media as a thermometer to gauge patient and caregiver concerns: COVID-19 and prostate cancer. European Urology Open Science, 25, 1--4.
  • Xu, A. J., Taylor, J., Gao, T., Mihalcea, R., Perez-Rosas, V., & Loeb, S. (2021). TikTok and prostate cancer: misinformation and quality of information using validated questionnaires. BJU International, 128(4), 435--437. https://doi.org/10.1111/bju.15403
  • Lahnala, A., Zhao, Y., Welch, C., Kummerfeld, J. K., An, L. C., Resnicow, K., … Perez-Rosas, V. (2021). Exploring Self-Identified Counseling Expertise in Online Support Forums. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 4467--4480). Online: Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.findings-acl.392
  • Min, D. J., Perez-Rosas, V., & Mihalcea, R. (2021). Evaluating Automatic Speech Recognition Quality and Its Impact on Counselor Utterance Coding. In N. Goharian, P. Resnik, A. Yates, M. Ireland, K. Niederhoffer, & R. Resnik (Eds.), Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access (pp. 159--168). Online: Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.clpsych-1.18
  • Kazemi, A., Li, Z., Perez-Rosas, V., & Mihalcea, R. (2021). Extractive and Abstractive Explanations for Fact-Checking and Evaluation of News. In A. Feldman, G. Da San Martino, C. Leberknight, & P. Nakov (Eds.), Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda (pp. 45--50). Online: Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.nlp4if-1.7

2020

  • Kazemi, A., Perez-Rosas, V., & Mihalcea, R. (2020). Biased TextRank: Unsupervised Graph-Based Content Extraction. In Proceedings of the 28th International Conference on Computational Linguistics.
  • Welch, C., Kummerfeld, J. K., Perez-Rosas, V., & Mihalcea, R. (2020). Exploring the Value of Personalized Word Embeddings. In Proceedings of the 28th International Conference on Computational Linguistics (pp. 6856--6862).
  • Yao, Y., Perez-Rosas, V., Abouelenien, M., & Burzo, M. (2020). MORSE: MultimOdal Sentiment Analysis for Real-Life SEttings. In Proceedings of the 2020 International Conference on Multimodal Interaction (pp. 387–396). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3382507.3418821
  • Min, D. J., Perez-Rosas, V., Kuo, S., Herman, W. H., & Mihalcea, R. (2020). UPSTAGE: Unsupervised Context Augmentation for Utterance Classification in Patient-Provider Communication. In F. Doshi-Velez, J. Fackler, K. Jung, D. Kale, R. Ranganath, B. Wallace, & J. Wiens (Eds.), Proceedings of the 5th Machine Learning for Healthcare Conference (Vol. 126, pp. 895--912). Virtual: PMLR. Retrieved from http://proceedings.mlr.press/v126/min20a.html
  • Alberto Castro-Hern\’andez, Ver\’onica P\’erez-Rosas, & Swigger, K. M. (2020). Collaboration and Content-Based Measures to Predict Task Cohesion in Global Software Development Teams. Polibits, 62, 5--12. https://doi.org/10.17562/PB-62-1
  • Loeb, S., Taylor, J., Borin, J. F., Mihalcea, R., Perez-Rosas, V., Byrne, N., … Langford, A. (2020). Fake news: spread of misinformation about urological conditions on social media. European Urology Focus, 6(3), 437--439.
  • Ver\’onica P\’erez-Rosas, Kazemi, A., Mihalcea, R., Hou, R., Byrne, N., & Loeb, S. (2020). MP64-02-2003;FAKE NEWS ABOUT PROSTATE CANCER: DISTINGUISHING LANGUAGE PATTERNS IN MISINFORMATIVE ONLINE VIDEOS. Journal of Urology, 203(Supplement 4), e963–e963. https://doi.org/10.1097/JU.0000000000000939.02
  • Castro Hernandez, A., Perez-Rosas, V., & Swigger, K. M. (2020). Collaboration and Content-Based Measures to Predict Task Cohesion in Global Software Development Teams. Polibits, 62, 5--12.
  • Welch, C., Lahnala, A., Perez-Rosas, V., Shen, S., Seraj, S., An, L., … Mihalcea, R. (2020). Expressive Interviewing: A Conversational System for Coping with COVID-19. In Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020. Online: Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.nlpcovid19-2.6
  • Welch, C., Kummerfeld, J. K., Ver\’onica P\’erez-Rosas, & Mihalcea, R. (2020). Compositional Demographic Word Embeddings. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.
  • Shen, S., Welch, C., Mihalcea, R., & Perez-Rosas, V. (2020). Counseling-Style Reflection Generation Using Generative Pretrained Transformers with Augmented Context. In Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue (pp. 10--20). 1st virtual meeting: Association for Computational Linguistics. Retrieved from https://www.aclweb.org/anthology/2020.sigdial-1.2
  • Xu, Z., Perez-Rosas, V., & Mihalcea, R. (2020). Inferring Social Media Users’ Mental Health Status from Multimodal Information. In N. Calzolari, B\’echet, Fr\’ed\’eric, P. Blache, K. Choukri, C. Cieri, T. Declerck, … S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference (pp. 6292--6299). Marseille, France: European Language Resources Association. Retrieved from https://aclanthology.org/2020.lrec-1.772

2019

  • Welch, C., Perez-Rosas, V., Kummerfeld, J. K., & Mihalcea, R. (2019). Look Who’s Talking: Inferring Speaker Attributes from Personal Longitudinal Dialog. In Proceedings of the 20th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing). La Rochelle, France.
  • Hou, R., Perez-Rosas, V., Loeb, S., & Mihalcea, R. (2019). Towards Automatic Detection of Misinformation in Online Medical Videos. In 2019 International Conference on Multimodal Interaction (pp. 235–243). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3340555.3353763
  • Welch, C., Ver\’onica P\’erez-Rosas, Kummerfeld, J., & Mihalcea, R. (2019). Learning From Personal Longitudinal Dialog Data. IEEE Intelligent Systems, 34(4), 16--23. https://doi.org/10.1109/MIS.2019.2916965
  • Burzo, M., Ver\’onica. P\’erez-Rosas, McDuff, D., Morency, L.-P., Narvaez, A., & Mihalcea, R. (2019). Sensing Affective Response to Visual Narratives. IEEE Computational Intelligence Magazine, 14(2), 54--66. https://doi.org/10.1109/MCI.2019.2901086
  • Perez-Rosas, V., Wu, X., Resnicow, K., & Mihalcea, R. (2019). What Makes a Good Counselor? Learning to Distinguish between High-quality and Low-quality Counseling Conversations. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 926--935). Florence, Italy: Association for Computational Linguistics. https://doi.org/10.18653/v1/P19-1088
  • Abouelenien, M., Burzo, M., Perez-Rosas, V., Mihalcea, R., Sun, H., & Zhao, B. (2019). Gender Differences in Multimodal Contact-Free Deception Detection. IEEE MultiMedia, 26(3), 19–30. https://doi.org/10.1109/MMUL.2018.2883128
  • Soldner, F., Perez-Rosas, V., & Mihalcea, R. (2019). Box of Lies: Multimodal Deception Detection in Dialogues. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 1768--1777). Minneapolis, Minnesota: Association for Computational Linguistics. https://doi.org/10.18653/v1/N19-1175

2018

  • Burzo, M., Abouelenien, M., Perez-Rosas, V., & Mihalcea, R. (2018). Multimodal Deception Detection. In The Handbook of Multimodal-Multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition - Volume 2 (pp. 419–453). Association for Computing Machinery and Morgan \& Claypool. Retrieved from https://doi.org/10.1145/3107990.3108005
  • Perez-Rosas, V., Kleinberg, B., Lefevre, A., & Mihalcea, R. (2018). Automatic Detection of Fake News. In Proceedings of the 27th International Conference on Computational Linguistics (pp. 3391--3401). Santa Fe, New Mexico, USA: Association for Computational Linguistics. Retrieved from https://www.aclweb.org/anthology/C18-1287
  • Perez-Rosas, V., Sun, X., Li, C., Wang, Y., Resnicow, K., & Mihalcea, R. (2018). Analyzing the Quality of Counseling Conversations: the Tell-Tale Signs of High-quality Counseling. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japan: European Language Resources Association (ELRA). Retrieved from https://www.aclweb.org/anthology/L18-1591

2017

  • Abouelenien, M., Perez-Rosas, V., Mihalcea, R., & Burzo, M. (2017). Multimodal Gender Detection. In Proceedings of the 19th ACM International Conference on Multimodal Interaction (pp. 302–311). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3136755.3136770
  • Abouelenien, M., Ver\’onica P\’erez-Rosas, Mihalcea, R., & Burzo, M. (2017). Detecting Deceptive Behavior via Integration of Discriminative Features From Multiple Modalities. IEEE Transactions on Information Forensics and Security, 12(5), 1042--1055. https://doi.org/10.1109/TIFS.2016.2639344
  • Perez-Rosas, V., Davenport, Q., Dai, A. M., Abouelenien, M., & Mihalcea, R. (2017). Identity Deception Detection. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 885--894). Taipei, Taiwan: Asian Federation of Natural Language Processing. Retrieved from https://www.aclweb.org/anthology/I17-1089
  • Perez-Rosas, V., Mihalcea, R., Resnicow, K., Singh, S., & An, L. (2017). Understanding and Predicting Empathic Behavior in Counseling Therapy. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1426--1435). Vancouver, Canada: Association for Computational Linguistics. https://doi.org/10.18653/v1/P17-1131
  • Perez-Rosas, V., Mihalcea, R., Resnicow, K., Singh, S., An, L., Goggin, K. J., & Catley, D. (2017). Predicting Counselor Behaviors in Motivational Interviewing Encounters. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers (pp. 1128--1137). Valencia, Spain: Association for Computational Linguistics. Retrieved from https://www.aclweb.org/anthology/E17-1106

2016

  • Resnicow, K., Harris, D., Wasserman, R., Schwartz, R. P., Perez-Rosas, V., Mihalcea, R., & Snetselaar, L. (2016). Advances in motivational interviewing for pediatric obesity: results of the brief motivational interviewing to reduce body mass index trial and future directions. Pediatric Clinics, 63(3), 539--562.
  • Perez-Rosas, V., Mihalcea, R., Resnicow, K., Singh, S., & An, L. (2016). Building a Motivational Interviewing Dataset. In Proceedings of the Third Workshop on Computational Linguistics and Clinical Psychology (pp. 42--51). San Diego, CA, USA: Association for Computational Linguistics. https://doi.org/10.18653/v1/W16-0305

2015

  • Perez-Rosas, V., Abouelenien, M., Mihalcea, R., & Burzo, M. (2015). Deception Detection Using Real-Life Trial Data. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (pp. 59–66). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2818346.2820758
  • Perez-Rosas, V., & Mihalcea, R. (2015). Experiments in Open Domain Deception Detection. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1120--1125). Lisbon, Portugal: Association for Computational Linguistics. https://doi.org/10.18653/v1/D15-1133
  • Perez-Rosas, V., Abouelenien, M., Mihalcea, R., Xiao, Y., Linton, C., & Burzo, M. (2015). Verbal and Nonverbal Clues for Real-life Deception Detection. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 2336--2346). Lisbon, Portugal: Association for Computational Linguistics. https://doi.org/10.18653/v1/D15-1281

2014

  • Perez-Rosas, V. (2014). Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis. University of North Texas. Retrieved from https://books.google.com/books?id=rnbMxgEACAAJ
  • Perez-Rosas, V. (2014). Modelado Causal del Desempe\~no de Algoritmos Heur\’\isticos en Problemas de Distribuci\’on de Objetos (Causal Modeling of Heuristic Algorithms’ Performance Applied to Object Distribution Problems). Instituto Tecnologico de Ciudad Madero.
  • Perez-Rosas, V., Bologa, C., Burzo, M., & Mihalcea, R. (2014). Deception Detection Within and Across Cultures. In C. Biemann & A. Mehler (Eds.), Text Mining: From Ontology Learning to Automated Text Processing Applications (pp. 157--175). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-12655-5\_8
  • Perez-Rosas, V., & Mihalcea, R. (2014). Gender Differences in Deceivers Writing Style. In A. Gelbukh, Espinoza, F\’elix Castro, & Galicia-Haro, Sof\’ia N. (Eds.), Human-Inspired Computing and Its Applications (pp. 163--174). Cham: Springer International Publishing.
  • Burzo, M., Wicaksono, C., Abouelenien, M., Ver\’onica P\’erez-Rosas, Mihalcea, R., & Tao, Y. (2014). Multimodal Sensing of Thermal Discomfort for Adaptive Energy Saving in Buildings. In NETZERO Conference 2014.
  • Burzo, M., Abouelenien, M., Perez-Rosas, V., Wicaksono, C., Tao, Y., & Mihalcea, R. (2014). Using Infrared Thermography and Biosensors to Detect Thermal Discomfort in a Building’s Inhabitants (Vol. Volume 6B: Energy, p. V06BT07A015). https://doi.org/10.1115/IMECE2014-40269
  • Perez-Rosas, V., & Mihalcea, R. (2014). Cross-cultural Deception Detection. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 440--445). Baltimore, Maryland: Association for Computational Linguistics. https://doi.org/10.3115/v1/P14-2072
  • Perez-Rosas, V., Mihalcea, R., Narvaez, A., & Burzo, M. (2014). A Multimodal Dataset for Deception Detection. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14) (pp. 3118--3122). Reykjavik, Iceland: European Language Resources Association (ELRA). Retrieved from http://www.lrec-conf.org/proceedings/lrec2014/pdf/869\%5FPaper.pdf
  • Abouelenien, M., Perez-Rosas, V., Mihalcea, R., & Burzo, M. (2014). Deception Detection Using a Multimodal Approach. In Proceedings of the 16th International Conference on Multimodal Interaction (pp. 58–65). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2663204.2663229

2013

  • Mihalcea, R., Perez-Rosas, V., & Burzo, M. (2013). Automatic Detection of Deceit in Verbal Communication. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction (pp. 131–134). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2522848.2522888
  • Perez-Rosas, V., & Mihalcea, R. (2013). Sentiment analysis of online spoken reviews. In Proc. Interspeech 2013 (pp. 862--866). https://doi.org/10.21437/Interspeech.2013-243
  • Perez-Rosas, V., Narvaez, A., Burzo, M., & Mihalcea, R. (2013). Thermal Imaging for Affect Detection. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2504335.2504374
  • Ver\’onica P\’erez-Rosas, Mihalcea, R., & Morency, L.-Philipe. (2013). Multimodal Sentiment Analysis of Spanish Online Videos. IEEE Intelligent Systems, 28(3), 38--45. https://doi.org/10.1109/MIS.2013.9
  • Perez-Rosas, V., Mihalcea, R., & Morency, L.-P. (2013). Utterance-Level Multimodal Sentiment Analysis. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 973--982). Sofia, Bulgaria: Association for Computational Linguistics. Retrieved from https://www.aclweb.org/anthology/P13-1096

2012

  • Burzo, M., McDuff, D., Mihalcea, R., Morency, L.-P., Narvaez, A., & Perez-Rosas, V. (2012). Towards Sensing the Influence of Visual Narratives on Human Affect. In Proceedings of the 14th ACM International Conference on Multimodal Interaction (pp. 153–160). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2388676.2388709
  • Perez-Rosas, V., Banea, C., & Mihalcea, R. (2012). Learning Sentiment Lexicons in Spanish. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12) (pp. 3077--3081). Istanbul, Turkey: European Language Resources Association (ELRA). Retrieved from http://www.lrec-conf.org/proceedings/lrec2012/pdf/1081\%5FPaper.pdf

2011

  • Cruz-Reyes, L., G\’omez-Santill\’an, Claudia, Schaeffer, S. E., Quiroz-Castellanos, M., Alvarez-Hern\’andez, Victor M, & Perez-Rosas, V. (2011). Enhancing accuracy of hybrid packing systems through general-purpose characterization. In Hybrid Artificial Intelligent Systems: 6th International Conference, HAIS 2011, Wroclaw, Poland, May 23-25, 2011, Proceedings, Part II 6 (pp. 26--33).