Portrait of Dr. Jelena Tesic

Dr. Jelena Tesic

  • Associate Professor at Computer Science, College of Science & Engineering

Scholarly and Creative Works

2025

  • Scouten, A., Gong, H., Tesic, J., & Wang, F. (n.d.). Deep Learning Pipeline for Modeling Pavement Cracks with an Imbalanced Dataset (MoPaC).
  • Elizondo, M., Yu, J., Payan, D., Feng, L., & Tesic, J. (2025). Novel Considerations in the ML/AI Modeling of Large-Scale Learning Loss. IEEE Access, 13, 7780–7792. https://doi.org/10.1109/access.2025.3526412
  • Zeraatkar, E., Farough, S. A., & Tesic, J. (2025). ViSIR: Vision Transformer Single Image Reconstruction Method for Earth System Models. IEEE Pulse, 16(1), 23–25. https://doi.org/10.1109/mpuls.2025.3526506
  • Akter Tani, T., Scouten, A., Ortiz, E. G., McLean, R. J. C., & Tesic, J. (2025). Automated Corrosion Identification in Metal Imagery: Traditional vs. Deep Learning. In Lecture Notes in Computer Science (Vol. 15047). Springer. https://doi.org/10.1007/978-3-031-77389-1_21

2024

  • Biswas, D., & Tesic, J. (2024). Domain Adaptation With Contrastive Learning for Object Detection in Satellite Imagery. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–15. https://doi.org/10.1109/tgrs.2024.3391621
  • Rahman, M. M. M., & Tesic, J. (2024). Stratified Graph Indexing for Efficient Search in Deep Descriptor Databases. International Journal of Multimedia Information Retrieval, 13(3). https://doi.org/10.1007/s13735-024-00342-8
  • Shebaro, M., Nogueira, L., & Tesic, J. (2024). Improving Association Discovery through Multiview Analysis of Social Networks. Social Network Analysis and Mining. https://doi.org/https://doi.org/10.1007/s13278-023-01197-3
  • Biswas, D., & Tesic, J. (2024). Unsupervised Domain Adaptation with Debiased Contrastive Learning and Support-Set Guided Pseudo Labeling for Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2024.3349541
  • Elizondo, M., Gobert, D. V. N., & Tesic, J. (2024). AI/ML Pipeline for Predicting Diabetic Readmissions from CMS OASIS dataset. IEEE.
  • Akter Tani, T., & Tesic, J. (2024). Advancing Retinal Vessel Segmentation with Diversified Deep Convolutional Neural Networks. IEEE Access, 1–1. https://doi.org/10.1109/access.2024.3467117
  • Rahman, M. M. M., Biswas, D., Chen, X., & Tesic, J. (2024). Image Deduplication Using Efficient Visual Indexing and Retrieval: Optimizing Storage, Time and Energy for Deep Neural Network Training. Signal, Image, and Video Processing. https://doi.org/10.21203/rs.3.rs-4682458/v1
  • Biswas, D., & Tesic, J. (2024). Binarydnet53: a lightweight binarized CNN for monkeypox virus image classification. Signal, Image and Video Processing, 18(10), 7107–7118. https://doi.org/10.1007/s11760-024-03379-8

2023

  • Tesic, J., & Shebaro, M. (2023). On Discovering Consensus States in Large Signed Graphs. Retrieved from https://www.insna.org/events/sunbelt-2023
  • Elizondo, M., Musal, R. M., & Tesic, J. (2023). Clinical Tabular Data in the Wild: A Data Science Perspective. Retrieved from https://ieeeichi.github.io/ICHI2023/
  • Gong, H., Tesic, J., Tao, J., Luo, X., & Wang, F. (2023). Automated Pavement Crack Detection with Deep Learning Methods: What Are Main Factors and How to Improve the Performance? Transportation Research Record. https://doi.org/https://doi.org/10.1177/036119812311613
  • Shebaro, M., & Tesic, J. (2023). Identifying Stable States of Large Signed Graphs. ACM. Retrieved from https://dl.acm.org/doi/10.1145/3543873.3587544
  • Shebaro, M., & Tesic, J. (2023). Identifying Stable States of Large Signed Graphs. In Companion Proceedings of the ACM Web Conference 2023 (Vol. 22, pp. 594–597). ACM. https://doi.org/10.1145/3543873.3587544
  • Rahman, M. M. M., & Tesic, J. (2023). Hybrid Approximate Nearest Neighbor Indexing and Search (HANNIS) for Large Descriptor Databases. IEEE. Retrieved from https://ieeexplore.ieee.org/document/10020464
  • Rahman, M. M. M., & Tesic, J. (2023). Poster: Evaluating Hybrid Approximate Nearest Neighbor Indexing and Search (HANNIS) for High-dimensional Image Feature Search. Retrieved from https://ieeexplore.ieee.org/document/10021048

2022

  • Tomasso, M. E., Rusnak, L. J., & Tesic, J. (2022). Advances in Scaling Community Discovery Methods for Large Signed Graph Networks. Network Science, 10(3). https://doi.org/10.1093/comnet/cnac013
  • Strauch, G., Lin, J., & Tesic, J. (2022). Overhead Projection Approach For Multi-Camera Vessel Activity Recognition. In Proceedings of IEEE International Conference on Big Data (pp. 5626–5632). IEEE. https://doi.org/10.1109/BigData52589.2021.9671274
  • Biswas, D., Rahman, M. M. M., Zong, Z., & Tesic, J. (2022). Improving the Energy Efficiency of Real-time DNN Object Detection via Compression, Transfer Learning, and Scale Prediction. IEEE.
  • Biswas, D., & Tesic, J. (2022). Small Object Difficulty (SOD) Modeling for Objects Detection in Satellite Images. IEEE. Retrieved from https://ieeexplore.ieee.org/abstract/document/10008383
  • Biswas, D., Rahman, M. M., Zong, Z., & Tesic, J. (2022). Improving the Energy Efficiency of Real-time DNN Object Detection via Compression, Transfer Learning, and Scale Prediction. In 2022 IEEE International Conference on Networking, Architecture and Storage (NAS). IEEE. https://doi.org/10.1109/nas55553.2022.9925528
  • Lommatzsch, A., Kille, B., Ozgobek, O., Zhou, Y., Tesic, J., Bartolomeu, C., … Larson, M. (2022). NewsImages: Addressing the Depiction Gap with an Online News Dataset for Text-Image Rematching. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3524273.3532891
  • Lommatzsch, A., Kille, B., Özgöbek, Ö., Zhou, Y., Tesic, J., Bartolomeu, C., … Larson, M. (2022). NewsImages. In Proceedings of the 13th ACM Multimedia Systems Conference. ACM. https://doi.org/10.1145/3524273.3532891
  • Tomasso, M. E., Rusnak, L. J., & Tesic, J. (2022). Cluster boosting and data discovery in social networks. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing (pp. 1801–1803). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3477314.3507243
  • Nogueira, L., & Tesic, J. (2022). pytwanalysis: Twitter Data Management And Analysis at Scale. In 2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS) (Vol. 3, pp. 1–8). IEEE. https://doi.org/10.1109/SNAMS53716.2021.9732079

2021

  • Rusnak, L. J., & Tesic, J. (2021). Characterizing Attitudinal Network Graphs through Frustration Cloud. Data Mining and Knowledge Discovery, 35(6), 2498–2539. https://doi.org/10.1007/s10618-021-00795-z
  • Shebaro, M., Oliver, J., Olarewaju, T., & Tesic, J. (2021). Enhancing Tweet Content Classification with Adapted Language Models. Retrieved from https://ceur-ws.org/Vol-3181/paper62.pdf
  • Alabandi, G. A. H., Tesic, J., Rusnak, L. J., & Burtscher, M. (2021). Discovering and balancing fundamental cycles in large signed graphs. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1–17). ACM. https://doi.org/10.1145/3458817.3476153
  • Ford, B., Qasem, A., Tesic, J., & Zong, Z. (2021). Migrating Software from x86 to ARM Architecture: An Instruction Prediction Approach. Retrieved from 601 University Dr
  • Ford, B. W., Qasem, A. M., Tesic, J., & Zong, Z. (2021). Migrating Software from x86 to ARM Architecture: An Instruction Prediction Approach. In 2021 IEEE International Conference on Networking, Architecture and Storage (NAS) (pp. 1–6). IEEE. https://doi.org/10.1109/nas51552.2021.9605443
  • Magill, A., Nogueira de Moura, L., Tomasso, M. E., Elizondo, M., & Tesic, J. (2021). Enriching Content Analysis of Tweets Using Community Discovery Graph Analysis (Vol. 2882). Retrieved from http://ceur-ws.org/Vol-2882/paper66.pdf

2020

  • Tesic, J., & Tamir, D. (2020). Computing with Words in Maritime Piracy and Attack Detection Systems. In Lecture Notes in Computer Science (Vol. 12197, pp. 434–444). Cham, U.S.: Springer International Publishing. https://doi.org/https://doi.org/10.1007/978-3-030-50439-7_30

2019

  • Tesic, J., Warren, N., & Heyse, D. B. (2019). Identifying maritime vessels at multiple levels of descriptions using deep features. In Artificial Intelligence and Machine Learning for Multi-Domain Operations (Vol. 11006). United States. https://doi.org/https://doi.org/10.1117/12.2519248
  • Samimi, H., Tesic, J., & Ngu, H. H. (2019). Patient Centric Data Integration for Improved Diagnosis and Risk Prediction. In Lecture Notes in Computer Science (pp. 185–195). Springer International Publishing. https://doi.org/10.1007/978-3-030-33752-0_13
  • Samimi, H., Tesic, J., & Ngu, H. H. (2019). Patient Centric Data Integration for Improved Diagnosis and Risk Prediction. In Heterogeneous Data Management, Polystores, and Analytics for Healthcare (pp. 185–195). Springer, Cham: Springer International Publishing. https://doi.org/https://link.springer.com/chapter/10.1007/978-3-030-33752-0_13
  • Dunstatter, N., Tahsini, A., Guirguis, M. S., & Tešić, J. (2019). Solving Cyber Alert Allocation Markov Games With Deep Reinforcement Learning. In 10th Conference on Decision and Game Theory for Security (GameSec).
  • Mauldin, T., Ngu, A., Metsis, V., Canby, M., & Tesic, J. (2019). Experimentation and Analysis of Ensemble Deep Learning in IoT Applications. Open Journal of Internet Of Things (OJIOT), 5(1), 133–149. Retrieved from http://nbn-resolving.de/urn:nbn:de:101:1-2018080519304951282148
  • Heyse, D., Warren, N., & Tesic, J. (2019). Identifying maritime vessels at multiple levels of descriptions using deep features. In T. Pham (Ed.), Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications. SPIE. https://doi.org/10.1117/12.2519248
  • Nogueira De Moura, L., & Tesic, J. (2019). Spread of English Neologisms through Brazilian Portuguese Online Chatter, A Data Science Perspective. Retrieved from https://www.journals.elsevier.com/lingua

2018

  • Tesic, J., Warren, N., Garrard, B., & Staudt, E. (2018). Transfer Learning of Deep Neural Networks for Visual Collaborative Maritime Asset Identification. IEEE. https://doi.org/10.1109/CIC.2018.00041

2015

  • Tesic, J., Sullivan, K., Manjunath, B. S., & Chandrasekaran, S. (2015). Scalable Video Indexing, Search, and Retrieval. NAVAIR Journal.
  • Tesic, J. (2015). An end-to-end system for content-based video retrieval using behavior, actions, and appearance with interactive query refinement.

2010

  • Xie, L., Yan, R., Tesic, J., Natsev, A., & Smith, J. R. (2010). Probabilistic visual concept trees.
  • Dantone, M., Sullivan, K., & Tesic, J. (2010). Multimedia Event Detection (MED) Evaluation Task.
  • Xie, L., Yan, R., Tesic, J., Natsev, A., & Smith, J. R. (2010). Probabilistic visual concept trees. In Proceedings of the 18th ACM international conference on Multimedia (Vol. 33, pp. 867–870). ACM. https://doi.org/10.1145/1873951.1874099

2008

  • Natsev, A., Jiang, W., Merler, M., Smith, J. R., Tesic, J., Xie, L., & Yan, R. (2008). IBM Research trecvid-2008 video retrieval system.
  • Golder, S., & Tešić, J. (2008). Collaborative Tagging of Multimedia. IEEE Multimedia, 15(3), 12–13. https://doi.org/10.1109/mmul.2008.58
  • Natsev, A., Smith, J. R., Tesic, J., Xie, L., & Yan, R. (2008). IBM Multimedia Analysis and Retrieval System - Video Olympics People’s choice award.

2007

  • Campbell, M., Haubold, A., Natsev, A., Smith, J. R., Tesic, J., Xie, L., … Yang, J. (2007). IBM research trecvid-2007 video retrieval system.
  • Natsev, A., Haubold, A., Tesic, J., Xie, L., & Yan, R. (2007). Semantic concept-based query expansion and re-ranking for multimedia retrieval.
  • Natsev, A. (Paul), Haubold, A., Tesic, J., Xie, L., & Yan, R. (2007). Semantic concept-based query expansion and re-ranking for multimedia retrieval. In Proceedings of the 15th ACM international conference on Multimedia. ACM. https://doi.org/10.1145/1291233.1291448
  • Yan, R., Tesic, J., & Smith, J. R. (2007). Model-shared subspace boosting for multi-label classification.
  • Yan, R., Tesic, J., & Smith, J. R. (2007). Model-shared subspace boosting for multi-label classification. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM. https://doi.org/10.1145/1281192.1281281
  • Tesic, J., Natsev, A., & Smith, J. R. (2007). Cluster-based Data Modeling for Semantic Video Search.
  • Tesic, J., Natsev, A., Seidl, J., & Smith, J. R. (2007). IBM marvel interactive video threading.
  • Natsev, A., Smith, J. R., Tesic, J., Xie, L., & Yan, R. (2007). IBM Multimedia Search and Retrieval System.
  • Tesic, J., Natsev, A., Xie, L., & Smith, J. R. (2007). Data modeling strategies for imbalanced learning in visual search.
  • Xie, L., Tesic, J., & Natsev, A. (2007). Dynamic multimodal fusion in video search.
  • Tesic, J., Natsev, A., Xie, L., & Smith, J. R. (2007). Data Modeling Strategies for Imbalanced Learning in Visual Search. In Multimedia and Expo, 2007 IEEE International Conference on (pp. 1990–1993). IEEE. https://doi.org/10.1109/icme.2007.4285069
  • Xie, L., Natsev, A., & Tesic, J. (2007). Dynamic Multimodal Fusion in Video Search. In Multimedia and Expo, 2007 IEEE International Conference on (pp. 1499–1502). IEEE. https://doi.org/10.1109/icme.2007.4284946
  • Natsev, A., Tesic, J., Xie, L., Yan, R., & Smith, J. R. (2007). IBM multimedia search and retrieval system. In Proceedings of the 6th ACM international conference on Image and video retrieval (pp. 645–645). ACM. https://doi.org/10.1145/1282280.1282373
  • Tesic, J., Natsev, A., Seidl, J., & Smith, J. R. (2007). IBM multimodal interactive video threading. In Proceedings of the 6th ACM international conference on Image and video retrieval (pp. 124–126). ACM. https://doi.org/10.1145/1282280.1282302
  • Tesic, J., Natsev, A. (Paul), & Smith, J. R. (2007). Cluster-based data modeling for semantic video search. In Proceedings of the 6th ACM international conference on Image and video retrieval (pp. 595–602). ACM. https://doi.org/10.1145/1282280.1282365

2006

  • Tesic, J., & Smith, J. R. (2006). Efficient Summarizing of Multimedia Archives Using Cluster Labeling. In Lecture Notes in Computer Science (pp. 518–520). Springer Berlin Heidelberg. https://doi.org/10.1007/11788034_58
  • Campbell, M., Haubold, A., Ebadollahi, S., Naphade, M. R., Natsev, A., Seidl, J., … Xie, L. (2006). IBM Research trecvid-2006 video retrieval system.
  • Wang, J. Z., Boujemaa, N., Del Bimbo, A., Geman, D., Hauptmann, A. G., & Tesic, J. (2006). Diversity in multimedia information retrieval research. In Proceedings of the 8th ACM international workshop on Multimedia information retrieval (pp. 5–12). ACM. https://doi.org/10.1145/1178677.1178681
  • Naphade, M., Smith, J. R., Tesic, J., Chang, S. F., Hsu, W., Kennedy, L., … Curtis, J. (2006). Large-Scale Concept Ontology for Multimedia. IEEE Multimedia Magazine, 13.
  • Tesic, J., & Smith, J. R. (2006). Efficient summarizing of multimedia archives using cluster labeling.
  • Tesic, J., & Smith, J. R. (2006). Semantic labeling of multimedia content clusters.
  • Tesic, J., & Smith, J. (2006). Semantic Labeling of Multimedia Content Clusters. In 2006 IEEE International Conference on Multimedia and Expo (pp. 1493–1496). IEEE. https://doi.org/10.1109/icme.2006.262825
  • Christel, M., Naphade, M., Natsev, A., & Tesic, J. (2006). Assessing the filtering and browsing utility of automatic semantic concepts for multimedia retrieval.

2005

  • Tesic, J. (2005). Metadata Practices for Consumer Photos. IEEE Multimedia Magazine, 12.
  • Smith, J. R., Naphade, M., Natsev, A. (Paul), & Tesic, J. (2005). Multimedia Research Challenges for Industry. In Lecture Notes in Computer Science (pp. 28–37). Springer Berlin Heidelberg. https://doi.org/10.1007/11526346_4
  • Natsev, A., Naphade, M. R., & Tesic, J. (2005). Learning the Semantics of Multimedia Queries and Concepts from a Small Number of Examples.
  • Smith, J. R., Naphade, M. R., Natsev, A., & Tesic, J. (2005). Multimedia research challenges for industry.
  • Amir, A., Argillander, J., Campbell, M., Haubold, A., Ebadollahi, S., Kang, F., … Volkmer, T. (2005). IBM Research trecvid-2005 video retrieval system.
  • Natsev, A. (Paul), Naphade, M. R., & Tesic, J. (2005). Learning the semantics of multimedia queries and concepts from a small number of examples. In Proceedings of the 13th annual ACM international conference on Multimedia (Vol. 4210, pp. 598–607). ACM. https://doi.org/10.1145/1101149.1101288
  • Smith, J. R., Campbell, M. S., Naphade, M. R., Natsev, A., & Tesic, J. (2005). Learning of semantic concepts in broadcast video.

2004

  • Tesic, J. (2004). Managing Large-scale Multimedia Repositories. Ph.D. Thesis, UC Santa Barbara.
  • Newsam, S., Tesic, J., Wang, L., & Manjunath, B. S. (2004). Issues in Managing Video Datasets.
  • Amir, A., Chang, S. F., Franz, M., Iyengar, G., Kender, J., Lin, C. Y., … Tesic, J. (2004). IBM research TRECVID-2004 video retrieval system.

2003

  • Newsam, S. D., Tesic, J., Wang, L., & Manjunath, B. S. (2003). <title>Issues in managing image and video data</title> In M. M. Yeung, R. W. Lienhart, & C.-S. Li (Eds.), SPIE Proceedings (Vol. 5307, pp. 280–291). SPIE. https://doi.org/10.1117/12.538096
  • Tesic, J., Bhagavathy, S., & Manjunath, B. S. (2003). Issues Concerning Dimensionality and Similarity Search.
  • Bhagavathy, S., Tesic, J., & Manjunath, B. S. (2003). On the Rayleigh nature of Gabor filter outputs.
  • Tesic, J., & Manjunath, B. S. (2003). Issues concerning multimedia mining, methods for mining video data.
  • Tesic, J., & Manjunath, B. S. (2003). Nearest Neighbor Search for Relevance Feedback.
  • Tesic, J., Newsam, S., & Manjunath, B. S. (2003). Mining Image Datasets using Perceptual Association Rules.

2002

  • Tesic, J., Newsam, S., & Manjunath, B. S. (2002). Scalable Spatial Event Representation.
  • Tesic, J., Newsam, S., & Manjunath, B. S. (2002). Challenges in Mining Large Image Datasets. IPAM Short Program on Mathematical Challenges in Scientific Data Mining. Los Angeles, CA.

2000

  • Tesic, J., & Manjunath, B. S. (2000). Mining image datasets. Workshop on Mining Scientific Datasets, Minneapolis, MN.

1998

  • Orton, G. S., Fisher, B. M., Baines, K. H., Stewart, S. T., Friedson, A. J., Ortiz, J. L., … Parija, K. C. (1998). Characteristics of the Galileo probe entry site from Earth-based remote sensing observations. Journal of Geophysical Research.
  • Orton, G. S., Fisher, B. M., Baines, K. H., Stewart, S. T., Friedson, A. J., Ortiz, J. L., … Parija, K. C. (1998). Characteristics of the Galileo probe entry site from Earth‐based remote sensing observations. Journal of Geophysical Research: Planets, 103(E10), 22791–22814. https://doi.org/10.1029/98je02380
  • Dujković, D., Tesic, J., Mashanovich, M., Rakoćevic, I., Milosavljevi´c, I., Reljin, B., & Kostić, P. (1998). Automated segmentation and pathogen cell detection in tissues (in Serbian).
  • Tesic, J., & Arantes, D. (1998, February). Imaging of electrocardiogram (ECG) signals. Computer Science Dept, University of Campinas, Brazil.