Biography and education

Prof. Piner’s research and technology development interests are in the growth and characterization, semiconductor fabrication, and performance optimization of gallium nitride, aluminum nitride and their alloys for device applications. Less than one-tenth of the lab performance capability of III-Nitride electronic devices has been realized commercially. Thermal impedance is a key hindrance to closing this gap. The nitrogen-face of the polar GaN crystal is a noteworthy research field. Coupled with chemical vapor deposition diamond, N-face GaN FETs will offer the next device performance revolution of Wide Bandgap Semiconductors (WBGs) in a variety of harsh environments, including high temperature applications. The AlGaN/GaN structure has particularly sensitive surface states coupled to the 2DEG channel of the FET. The sensitivity is exploitable for biological, radiological, chemical, and environmental sensors.

Prof. Piner's Texas State team has demonstrated a technique to grow single crystal GaN on patterned diamond. The technique involves epitaxial lateral overgrowth of III-Nitride thin film on exposed diamond windows demonstrating, for the first time, direct contact between III-Nitride semiconductors and diamond, without intervening passivating or protection layers. Combining this new technique with Ultra Wideband Gap (UWBG) semiconductors and heterojunctions will enable better modeling to comprehend phonon and vibrational-modes in UWBG materials and their interfaces with diamond, as well as lead to the interesting p-diamond/n-Al(Ga)N junction to study electrical transport and the potential for such a p-n junction for device applications. UWBG hetero-integration with diamond is expected to revolutionize the thermal transport challenges of high Al-content AlGaN/AlN (and gallium oxide, in the future) as well as enable a novel electrical junction device.

The combinable features of III-Nitride materials; N-face surface, wireless functionality, and harsh environment immunity in a single, environmentally safe, semiconductor material system, could pioneer a new era in solid-state device utilization for extreme applications.

Research Interests