Portrait of Dr. Gregory B Passty

Dr. Gregory B Passty

  • Professor at Mathematics, College of Science & Engineering
  • Asst Dean, College

Scholarly and Creative Works

1988

  • Passty, G. B., & Torrejon, R. (1988). On extending the router sum to monotone operators. In Linear Circuits, Systems and Signal Processing: Theory and Applications (pp. 391–395). North Holland.

1986

  • Passty, G. B. (1986). The parallel sum of nonlinear monotone operators. Nonlinear Analysis – Theory, Methods and Applications, 10, 215–227.

1985

  • Passty, G. B., & Torrejon, R. (1985). The parallel sum of generalized gradients. In Trends in the Theory and Practice of Non-Linear AnalysisNorth Holland (pp. 371–376). North Holland.

1983

  • Barnsley, M. F., Herod, J. V., Mosher, D. L., & Passty, G. B. (1983). Solutions for a model Boltzmann equation by monotonicity methods. Houston Journal of Mathematics, 9, 345–355.

1982

  • Passty, G. B. (1982). Construction of fixed points for asymptotically nonexpansive mappings. Proceedings of the American Mathematical Society, 84, 212–216.

1981

  • Barnsley, M. F., Herod, J. V., Mosher, D. L., & Passty, G. B. (1981). Some operators which commute in a nonlinear Boltzmann equation. Lettere al Nuovo Cimento, 32, 437–442.
  • Barnsley, M. F., Herod, J. V., Mosher, D. L., & Passty, G. B. (1981). Analysis of Boltzmann equations in Hilbert space by means of a nonlinear eigenvalue property. In Spectral Theory of Differential Operators (pp. 45–52). North Holland.
  • Barnsley, M. F., Herod, J. V., Jory, V. V., & Passty, G. B. (1981). The Tjon-Wu equation in Banach space settings methods. Journal of Functional Analysis, 43, 32–51.
  • Passty, G. B. (1981). Preservation of the asymptotic behavior of a nonlinear contraction semigroup by backward differencing. Houston Journal of Mathematics, 7, 103–110.

1979

  • Passty, G. B. (1979). Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. Journal of Mathematical Analysis and Applications, 7, 383–390.
  • Passty, G. B. (1979). Almost convergence of the infinite product of resolvents in Banach spaces. Nonlinear Analysis – Theory, Methods and Applications, 3, 279–282.