Dr. Susan Morey

  • Regents' Professor at Mathematics, College of Science & Engineering

Scholarly and Creative Works

2025

  • Hong, J., & Morey, S. (2025). Hilbert Coefficients and Sally Modules: A Survey of Vasconcelos’ Contributions. In Commutative Algebra: The Mathematical Legacy of Wolmer V. Vasconcelos (pp. 97–132). De Gruyter.

2024

  • Cooper, S., El Khoury, S., Faridi, S., Mayes-Tang, S., Morey, S., Sega, L., & Sprioff, S. (2024). Simplicial Resolutions of Powers of Square-free Monomial Ideals. Algebraic Combinatorics, 7, 77–107.

2023

  • Melhuish, K. M., Lew, K. M., Hicks, M. D., Guajardo, L. R., Dawkins, P. C., & Morey, S. (2023). Proving, Analyzing, and Deepening Understanding of a Structural Property in Abstract Algebra. In Sharing and Storing Knowledge about Teaching Undergraduate Mathematics An Introduction to a Written Genre for Sharing Lesson-specific Instructional Knowledge (pp. 129–140). Washington, D.C., United States of America: Mathematics Association of America. Retrieved from https://maa.org/sites/default/files/pdf/pubs/books/members/NTE95_web.pdf
  • Brennan, J., & Morey, S. (2023). Hilbert Series and Suspensions of Graphs. Sao Paulo Journal of Mathematical Sciences, 17, 17–35. https://doi.org/10.1007/s40863-022-00329-5
  • Louiza, F., Ha, H. T., & Morey, S. (2023). Regular Sequences on Squares of Monomial Ideals. Sao Paulo Journal of Mathematical Sciences, 17, 122–146. https://doi.org/https://doi.org/10.1007/s40863-022-00337-5

2022

  • Cooper, S., El Khoury, S., Faridi, S., Mayes-Tang, S., Morey, S., Sega, L., & Spiroff. (2022). Morse Resolutions of Powers of Square-free Monomial Ideals of Projective Dimension One. Journal of Algebraic Combinatorics, 55(4), 1085–1122.
  • Cooper, S., El Khoury, S., Faridi, S., Mayes-Tang, S., Morey, S., Sega, L., & Sprioff, S. (2022). Powers of Graphs & Applications to Resolutions of Powers of Monomial Ideals. Res. Math. Sci., 9(2), 25pp.

2021

  • Cooper, S., El Khoury, S., Faridi, S., Mayes-Tang, S., Morey, S., Sega, L., & Spiroff, S. (2021). Simplicial Resolutions for the Second Power of Square-free Monomial Ideals. In Women in Commutative Algebra- Proceedings of the 2019 WICA Workshop, Assoc. Women Math. Ser. (Vol. 29, pp. 193–205). Springer.
  • Morey, S. (2021). Finding Funding. In Notices of the AMS.

2020

  • Fouli, L., Ha, T., & Morey, S. (2020). Initially Regular Sequences and Depths of Ideals. Journal of Algebra, 559, 33–57. https://doi.org/10.1016/j.algebra.2020.03.027
  • Fouli, L., Ha, H. T., & Morey, S. (2020). Depth of Powers of Squarefree Monomial Ideals. In Advances in Mathematical Sciences, Assoc. Women Math. Ser. (Vol. 21, pp. 161–171). Springer, Cham. https://doi.org/10.1007/978-3-030-42687-3_10

2019

  • Ha, H. T., Lin, K.-N., Morey, S., Reyes, E., & Villarreal, R. H. (2019). Edge Ideals of Oriented Graphs. International Journal of Algebra and Computation, 29(3), 535–559. https://doi.org/10.1142/S0218196719500139
  • Martinez-Bernal, J., Morey, S., Villarreal, R. H., & Vivares, C. E. (2019). Depth and Regularity of Monomial Ideals via Polarization and Combinatorial Optimization. Acta Mathematica Vietnamica, 44, 243–268.
  • Ha, H. T., & Morey, S. (2019). Algebraic Algorithms for Even Circuits in Graphs. Mathematics, 7(9), 859.

2016

  • Campos, D., Gunderson, R., Morey, S., Paulsen, C., & Polstra, T. (2016). Depths and Stanley Depths of Path Ideals of Spines. Involve, 9, 155–170.

2015

  • Fouli, L., & Morey, S. (2015). A Lower Bound for Depths of Powers of Edge Ideals. J Algebr Comb, 42, 829–848.

2014

  • Campos, D., Gunderson, R., Morey, S., Paulsen, C., & Polstra, T. (2014). Depth and Cohen-Macaulay Properties of Path Ideals. J. Pure Appl. Algebra, 218, 1537–1543.

2012

  • Fouli, L., & Morey, S. (2012). Minimal reductions and cores of edge ideals. J. Algebra, 364, 52–66.
  • Morey, S., & Villarreal, R. H. (2012). Edge Ideals: Algebraic and Combinatorial Properties. Progress in Commutative Algebra, 1, 85–126.
  • Martinez-Bernal, J., Morey, S., & Villarreal, R. H. (2012). Associated Primes of Powers of Edge Ideals. Collectanea Mathematics, 63, 361–374.

2010

  • Morey, S. (2010). Depths of Powers of the Edge Ideal of a Tree. Communications in Algebra, 38, 4042–4055.
  • Ha, H. T., & Morey, S. (2010). Embedded Associated Primes of Powers of Square-free Monomial Ideals. J. Pure and Applied Algebra, 214, 301–308.

2009

  • Ha, H. T., Morey, S., & Villarreal, R. H. (2009). Cohen-Macaulay Admissible Clutters. Journal of Commutative Algebra, 1, 463–480.

2008

  • Morey, S., Reyes, E., & Villarreal, R. H. (2008). Cohen-Macaulay, Shellable and Unmixed Clutters with a Perfect Matching of Konig Type. J. Pure and Applied Algebra, 212, 1770–1786.
  • Morey, S. (2008). Mathematics Research by Undergraduates: Costs and Benefits to Faculty and the Institution. CUPM Subcommittee on Research by Undergraduates. Retrieved from http://www.maa.org/cupm/

2005

  • Johnson, M., & Morey, S. (2005). Normal Ideals and Expected Reduction Numbers. Communications in Algebra, 33, 3787–3795.

2002

  • Chen, J., Morey, S., & Sung, A. (2002). The Stable Set of Associated Primes of the Ideal of a Graph. Rocky Mountain Journal of Mathematics, 32, 71–89.

2001

  • Johnson, M., & Morey, S. (2001). Normal Blow-ups and their Expected Defining Equations. J. Pure and Applied Algebra, 162, 303–313.
  • Morey, S., & Vasconcelos, W. V. (2001). Special Divisors of Blowup Algebras, in Ring Theory and Algebraic Geometry. In Lecture Notes in Pure and Applied Mathematics (Vol. 221, pp. 257–288). New York, Basel: Marcel Dekker.

1999

  • Morey, S. (1999). Stability of Associated Primes and Equality of Ordinary and Symbolic Powers of Ideals. Communications In Algebra, 27, 3221–3231.

1996

  • Morey, S., & Ulrich, B. (1996). Rees Algebras of Ideals With Low Codimension. Proc. Amer. Math. Soc., 124, 3653–3661.
  • Morey, S. (1996). Equations of Blowups of Ideals of Codimension Two and Three. J. Pure and Applied Algebra, 109, 197–211.

1995

  • Morey, S., Noh, S., & Vasconcelos, W. V. (1995). Symbolic Powers, Serre Conditions and Cohen-Macaulay Rees Algebras. Manuscripta Math, 86, 113–124.