Portrait of Dr. Oleg V Komogortsev

Dr. Oleg V Komogortsev

  • Professor at Computer Science, College of Science & Engineering

Scholarly and Creative Works

2024

  • Melnyk, K., Friedman, L., & Komogortsev, O. (2024). What can entropy metrics tell us about the characteristics of ocular fixation trajectories? Plos One, 19(1). https://doi.org/https://doi.org/10.1371/journal.pone.0291823
  • Fernandes, A., Murdison, S., Schuetz, I., Komogortsev, O., & Proulx, M. (2024). The Effect of Degraded Eye Tracking Accuracy on Interactions in VR. ACM. https://doi.org/https://doi.org/10.1145/3649902.3656369
  • Aziz, S. D., Lohr, D., Friedman, L., & Komogortsev, O. (2024). Evaluation of Eye Tracking Signal Quality for Virtual Reality Applications: A Case Study in the Meta Quest Pro. ACM. https://doi.org/https://dl.acm.org/doi/10.1145/3649902.3653347
  • Komogortsev, O., & Friedman, L. (2024). Evidence for five types of fixation during a random saccade eye tracking task and changes in fixation duration as a function of time-on-task. Plos One. https://doi.org/https://doi.org/10.1371/journal.pone.0310436
  • Burlingham, C., Sendhilnathan, N., Komogortsev, O., & Proulx, M. (2024). Motor “laziness” constrains fixation selection in real-world tasks. Proceedings of the National Academy of Sciences. https://doi.org/https://doi.org/10.1073/pnas.230223912
  • Raju, M. H., Friedman, L., Lohr, D., & Komogortsev, O. (2024). Per-Subject Oculomotor Plant Mathematical Models and the Reliability of Their Parameters. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 7(2). https://doi.org/https://doi.org/10.1145/3649902.3653353
  • Raju, M. H., Friedman, L., Lohr, D., & Komogortsev, O. (2024). Signal vs Noise in Eye-tracking Data: Biometric Implications and Identity Information Across Frequencies. https://doi.org/https://doi.org/10.1145/3649902.3653353
  • Katrychuk, D., & Komogortsev, O. (2024). Appearance-Based Gaze Estimation as a Benchmark for Eye Image Data Generation Methods. Sensors, 14(20). https://doi.org/https://doi.org/10.3390/app14209586
  • Lohr, D., Proulx, M. J., & Komogortsev, O. (2024). Establishing a Baseline for Gaze-driven Authentication Performance in VR: A Breadth-First Investigation on a Very Large Dataset. In IEEE International Joint Conference on Biometrics (IJCB) 2024 (pp. 1–10). IEEE. https://doi.org/10.1109/ijcb62174.2024.10744483

2023

  • Friedman, L., Prokopenko, V., Djanian, S., Katrychuk, D., & Komogortsev, O. (2023). Factors affecting inter-rater agreement in human classification of eye movements: a comparison of three datasets. Behavior Research Methods, 55(1), 417–427. https://doi.org/https://doi.org/10.3758/s13428-021-01782-4
  • Lohr, D., Aziz, S. D., Friedman, L., & Komogortsev, O. (2023). GazeBaseVR, a large-scale, longitudinal, binocular eye-tracking dataset collected in virtual reality. Scientific Data, 10(1). Retrieved from https://www.nature.com/articles/s41597-023-02075-5
  • Aziz, S. D., Lohr, D., Stefanescu, R., & Komogortsev, O. (2023). Practical Perception-Based Evaluation of Gaze Prediction for Gaze Contingent Rendering (pp. 1–17).
  • Lohr, D., Johnson, S., Aziz, S. D., & Komogortsev, O. (2023). Demonstrating Eye Movement Biometrics in Virtual Reality. ACM.
  • Palmero, C., Komogortsev, O., Escalera, S., & Talathi, S. (2023). Multi-Rate Sensor Fusion for Unconstrained Near-Eye Gaze Estimation (pp. 1–8). ACM.
  • Raju, M. H., Friedman, L., Bouman, T., & Komogortsev, O. (2023). Filtering eye-tracking data from an EyeLink 1000: Comparing heuristic, Savitzky-Golay, IIR and FIR digital filters. Journal of Eye Movement Research, 14(3). Retrieved from https://bop.unibe.ch/JEMR/article/view/9888
  • Raju, M. H., Friedman, L., Bouman, T., & Komogortsev, O. (2023). Determining which sine wave frequencies correspond to signal and which correspond to noise in eye-tracking time-series. Journal of Eye Movement Research, 14(3). Retrieved from https://bop.unibe.ch/JEMR/article/view/9887

2022

  • Komogortsev, O., & Lohr, D. (2022). Eye Know You Too: Toward Viable End-to-End Eye Movement Biometrics for User Authentication. Transactions on Information Forensics and Security (TIFS), 3151–3164. https://doi.org/0.1109/TIFS.2022.3201369
  • Wagle, N., Morkos, J., Liu, J., Greenstein, J., Gong, K., Gangan, I., … Green, K. (2022). Non-Eye Tracking, Deep Learning-enabled Detection of Nystagmus in Dizzy Patients.
  • Wagle, N., Morkos, J., Liu, J., Reith, H., Greenstein, J., Gong, K., … Green, K. (2022). aEYE: A deep learning system for video nystagmus detection. Frontiers in Neurology, 13. https://doi.org/10.3389/fneur.2022.963968
  • Friedman, L., Prokopenko, V., Djanian, S., Katrychuk, D., & Komogortsev, O. (2022). Factors affecting inter-rater agreement in human classification of eye movements: a comparison of three datasets. Behavior Research Methods, 1–11. https://doi.org/https://doi.org/10.3758/s13428-021-01782-4
  • Lohr, D., Griffith, H., & Komogortsev, O. (2022). Eye Know You: Metric Learning for End-to-End Biometric Authentication Using Eye Movements From a Longitudinal Dataset. IEEE Transactions on Biometrics, Behavior, and Identity Science, 4(2), 276–288. https://doi.org/10.1109/TBIOM.2022.3167633
  • Katrychuck, D., & Komogortsev, O. (2022). A study on the generalizability of Oculomotor Plant Mathematical Model. ACM. https://doi.org/https://doi.org/10.1145/3517031.3532523
  • Aziz, S., & Komogortsev, O. (2022). An Assessment of the Eye Tracking Signal Quality Captured in the HoloLens 2. ACM. https://doi.org/https://doi.org/10.1145/3517031.3529626
  • Raju, M., Lohr, D., & Komogortsev, O. (2022). Iris Print Attack Detection using Eye Movement Signals. ACM. https://doi.org/https://doi.org/10.1145/3517031.3532521
  • Friedman, L., Stern, H., Prokopenko, V., Djanian, S., Friffith, H., & Komogortsev, O. (2022). Biometric Performance as a Function of Gallery Size. Applied Sciences, 12(21). https://doi.org/https://doi.org/10.3390/app122111144
  • Aziz, S., Lohr, D. J., & Komogortsev, O. (2022). SynchronEyes: A Novel, Paired Data Set of Eye Movements Recorded Simultaneously with Remote and Wearable Eye-Tracking Devices. In 2022 Symposium on Eye Tracking Research and Applications. ACM. https://doi.org/10.1145/3517031.3532522

2021

  • Cruz, R., Komogortsev, O., Frohman, E., & Frohman, T. (n.d.). Treating MS after surviving PML: Discrete strategies for rescue, remission, and recovery patient 2: From the National Multiple Sclerosis Society Case Conference Proceedings. Neurology Neuroimmunology & Neuroinflammation.
  • Frohman, E., Villemarette-Pittman, N., Rodriguez, A., Glanzman, R., Rugheimer, S., Komogortsev, O., … Frohman, T. (2021). Application of an evidence-based, out-patient treatment strategy for COVID-19: Multidisciplinary medical practice principles to prevent severe disease. Journal of the Neurological Sciences, 426.
  • Friedman, L., Lohr, D., Hanson, T., & Komogortsev, O. (2021). Angular offset distributions during fixation are, more often than not, multimodal. Journal of Eye Movement Research, 14(3).
  • Palmero, C., Sharma, A., Behrendt, K., Krishnakumar, K., Komogortsev, O., & Talathi, S. (2021). OpenEDS2020 Challenge on Gaze Tracking for VR: Dataset and Results. Sensors, 21(14).
  • Griffith, H., Lohr, D., Abdulin, E., & Komogortsev, O. (2021). GazeBase, a large-scale, multi-stimulus, longitudinal eye movement dataset. Nature: Scientific Data, 8.
  • Friedman, L., Hanson, T., & Komogortsev, O. (2021). Multimodality During Fixation–Part II: Evidence for Multimodality in Spatial Precision-Related Distributions and Impact on Precision Estimates. Journal of Eye Movement Research, 14(3).
  • Wagle, N., Morkos, J., Liu, J., Greenstein, J., Gong, K., Gangan, I., … Green, K. (n.d.). Deep Learning Model Detects Nystagmus from Video Recording.

2020

  • Katrychuk, D., Griffith, H. K., & Komogortsev, O. (2020). A Calibration Framework for Photosensor-based Eye-Tracking System. In ACM Symposium on Eye Tracking Research and Applications (pp. 1--5).
  • Griffith, H. K., & Komogortsev, O. (2020). A Shift-Based Data Augmentation Strategy for Improving Saccade Landing Point Prediction. In ACM Symposium on Eye Tracking Research and Applications (pp. 1--6).
  • Griffith, H. K., & Komogortsev, O. (2020). Texture Feature Extraction From Free-Viewing Scan Paths Using Gabor Filters With Downsampling. In ACM Symposium on Eye Tracking Research and Applications (pp. 1--3).
  • Griffith, H. K., Lohr, D., Abdulin, E., & Komogortsev, O. (2020). GazeBase: A Large-Scale, Multi-Stimulus, Longitudinal Eye Movement Dataset. arXiv Preprint arXiv:2009.06171.
  • Chen, Y., Komogortsev, O., & Talathi, S. (2020). Domain Adaptation for Eye Segmentation.
  • Zhu, Y., Yan, Y., & Komogortsev, O. (2020). Hierarchical HMM for Eye Movement Classification (pp. 544–554).
  • Lohr, D., Aziz, S., & Komogortsev, O. (2020). Eye Movement Biometrics Using a New Dataset Collected in Virtual Reality (pp. 1–3).
  • Komogortsev, O., Cavin, R., & Palermo, C. (2020). Dataset for Eye Tracking on a Virtual Reality Platform.
  • Palermo, C., Komogortsev, O., & Talathi, S. (2020). Benefits of temporal information for appearance-based gaze estimation.
  • Friedman, L., Stern, H., Price, L. R., & Komogortsev, O. (2020). Why Temporal Persistence of Biometric Features, as Assessed by the Intraclass Correlation Coefficient, Is So Valuable for Classification Performance, 20(16).
  • Shen, Y., Komogortsev, O., & Talathi, S. S. (2020). Domain Adaptation for Eye Segmentation. In Lecture Notes in Computer Science (pp. 555–569). Springer International Publishing. https://doi.org/10.1007/978-3-030-66415-2_36
  • Lohr, D., Griffith, H., Aziz, S., & Komogortsev, O. (2020). A Metric Learning Approach to Eye Movement Biometrics. In 2020 IEEE International Joint Conference on Biometrics (IJCB) (pp. 1–7). IEEE. https://doi.org/10.1109/ijcb48548.2020.9304859
  • Katrychuk, D., Griffith, H., & Komogortsev, O. (2020). A Calibration Framework for Photosensor-based Eye-Tracking System. In ACM Symposium on Eye Tracking Research and Applications. ACM. https://doi.org/10.1145/3379156.3391370
  • Griffith, H., & Komogortsev, O. (2020). A Shift-Based Data Augmentation Strategy for Improving Saccade Landing Point Prediction. In ACM Symposium on Eye Tracking Research and Applications (pp. 1–6). ACM. https://doi.org/10.1145/3379157.3388935
  • Griffith, H. K., Aziz, S., & Komogortsev, O. (2020). Prediction of Oblique Saccade Trajectories Using Learned Velocity Profile Parameter Mappings. IEEE. https://doi.org/10.1109/CCWC47524.2020.9031274

2019

  • Griffith, H. K., Katrychuk, D., & Komogortsev, O. (2019). Assessment of Shift-Invariant CNN Gaze Mappings for PS-OG Eye Movement Sensors.
  • Friedman, L., & Komogortsev, O. (2019). Assessment of the Effectiveness of 7 Biometric Feature  Normalization Techniques. Transactions on Information Forensics and Security, 14(10), 2528–2536.
  • Katrychuk, D., Griffith, H. K., & Komogortsev, O. (2019). Power-efficient and shift-robust eye-tracking sensor for portable VR headsets (pp. 1–9). ACM.
  • Katrychuk, D., Griffith, H. K., & Komogortsev, O. (2019). Power-efficient and shift-robust eye-tracking sensor for portable VR headsets.
  • Friedman, L., Stern, H. S., Prokopenko, V., Djanian, S., Griffith, H. K., & Komogortsev, O. (2019). Biometric Performance as a Function of Gallery Size. arXiv Preprint arXiv:1906.06272.

2018

  • Reppert, T., Rigas, I., Herzfeld, D., Sedaghat-Nejad, E., Komogortsev, O., & Shadmehr, R. (2018). Movement vigor as a trait-like attribute of individuality. Journal of Neurophysiology, 120(2), 741–757.
  • Rigas, I., Raffle, H., & Komogortsev, O. (2018). Photosensor Oculography: Survey and Parametric Analysis of Designs Using Model-Based Simulation. IEEE Transactions on Human-Machine Systems, PP(99), 741–757.
  • Rigas, I., Friedman, L., & Komogortsev, O. V. (2018). Study of an Extensive Set of Eye Movement Features: Extraction Methods and Statistical Analysis. Journal of Eye Movement Research, 10(4).
  • Friedman, L., Rigas, I., Abdulin, E., & Komogortsev, O. (2018). A Novel Evaluation of Two Related, and Two Independent Algorithms for Eye Movement Classification during Reading. Behavioral Research Methods (BRM) Journal, 50(4), 1374–1397.
  • Griffith, H. K., Biswas, S., & Komogortsev, O. (2018). Towards Reduced Latency in Saccade Landing Position Prediction Using Velocity Profile Methods (pp. 79–91). Springer.
  • Griffith, H. K., Biswas, S., & Komogortsev, O. (2018). Towards improved saccade landing position estimation using velocity profile methods. IEEE.
  • Zemblys, R., & Komogortsev, O. (2018). Developing photo-sensor oculography (PS-OG) system for virtual reality headsets.
  • Lohr, D., Berndt, S., & Komogortsev, O. (2018). An implementation of eye movement-driven biometric in virtual reality.
  • Zemblys, R., & Komogortsev, O. (2018). Making stand-alone PS-OG technology tolerant to the equipment shifts. ACM.

2017

  • Friedman, L., Nixon, M., & Komogortsev, O. (2017). Method to assess the temporal persistence of potential biometric features: Application to oculomotor, gait, face and brain structure databases. PloS One.
  • Rigas, I., & Komogortsev, O. (2017). Hybrid PS-V Technique: A Novel Sensor Fusion Approach for Fast Mobile Eye-Tracking with Sensor-Shift Aware Correction. IEEE Sensors Journal.
  • Lohr, D., & Komogortsev, O. (2017). A Comparison of Smooth Pursuit- and Dwell-based Selection at Multiple Levels of Spatial Accuracy. ACM Conference on Human Factors in Computing Systems (CHI).
  • Abdulin, E., & Komogortsev, O. (2017). Study of Additional Eye-Related Features for Future Eye-Tracking Techniques,. ACM.
  • Choem, Y., Nguyen, K., Komogortsev, O., & Gutierrez-Osuna, R. (2017). Explanation of the Perceptual Oblique Effect Based on the Fidelity of Oculomotor Control During Saccades. IEEE.
  • Rigas, I., & Komogortsev, O. (2017). Current research in eye movement biometrics: An analysis based on BioEye 2015 competition. Journal of Image and Vision Computing, 129–141.
  • Zemblys, R., Niehorster, D., Komogortsev, O., & K. (2017). Using machine learning to detect events in eye-tracking data. Behavioral Research Methods.
  • Abdulin, E., Friedman, L., & Komogortsev, O. (2017). Method to Detect Eye Position Noise from Video-Oculography when Detection of Pupil or Corneal Reflection Position Fails (p. 20). ArXiv. Retrieved from https://arxiv.org/pdf/1709.02700.pdf
  • Friedman, L., & Komogortsev, O. (2017). MNH Code. Retrieved from https://digital.library.txstate.edu/handle/10877/6874
  • Rigas, I., & Komogortsev, O. (2017). Feature Extraction Code and Data. Retrieved from https://digital.library.txstate.edu/handle/10877/6904
  • Nguyen, K. N., Liu, X., Komogortsev, O., Gutierrez-Osuna, R., & Choe, Y. (2017). Explanation of the perceptual oblique effect based on the fidelity of oculomotor control during saccades. In 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 15–20). IEEE. https://doi.org/10.1109/devlrn.2017.8329781
  • Abdulin, E., Friedman, L., & Komogortsev, O. V. (2017). Method to Detect Eye Position Noise from Video-Oculography when Detection of Pupil or Corneal Reflection Position Fails. arXiv, https://arxiv.org/abs/1709.02700. Retrieved from https://arxiv.org/abs/1709.02700

2016

  • Rigas, I., Abdulin, E., & Komogortsev, O. (2016). Towards a multi-source fusion approach for eye movement-driven recognition. Information Fusion, 32(B), 13–25.
  • Karpov, A., Komogortsev, O., & Holland, C. (2016). Oculomotor Plant Characteristics: The Effects of Environment and Stimulus. IEEE Transactions on Information Forensics and Security, 11(3), 621–632.
  • Rigas, I., Komogortsev, O., & Shadmehr, R. (2016). Biometric Recognition via the Complex Eye Movement Behavior and the Incorporation of Saccadic Vigor and Acceleration Cues. ACM Transactions on Applied Perception, 13(2), 1–21.
  • Komogortsev, O., Rigas, I., & Abdulin, E. (2016). Eye Movement Biometrics on Wearable Devices: What Are the Limits? (pp. 1–6).
  • Lohr, D. J., Abdulin, E., & Komogortsev, O. (2016). Detecting the onset of eye fatigue in a live framework (pp. 1–2).
  • Friedman, L., Rigas, I., Nixon, M., & Komogortsev, O. (2016). Method to Assess the Temporal Persistence of Potential Biometric Features: Application to Oculomotor, and Gait-Related Databases.
  • Zborowski, A., Komogortsev, O., Ceballos, N., Treffalls, J., & Graham, R. (2016). “Food preferences and gaze patterns to complex food images.”
  • Gobert, D., Komogortsev, O., Nelson, S. M., Kerby, J. L., Buchner, S. A., & Rouse, D. A. (2016). “Oculomotor Behavior Profile: Biometric Indicator of Post-Concussion Recovery.”

2015

  • Rigas, I., & Komogortsev, O. (2015). Current research in eye movement biometrics: An analysis based on BioEye 2015 competition. Journal of Image and Vision Computing, 58.
  • Rigas, I., & Komogortsev, O. (2015). Eye movement-driven defense against iris print-attacks. Elsevier Journal Pattern Recognition Letters, Special Issue – Soft Biometrics, 68(P2), 316–326.
  • Komogortsev, O., Karpov, A., & Holland, C. (2015). Attack of Mechanical Replicas: Liveness Detection With Eye Movements. IEEE Transactions on Information Forensics and Security, 10(4), 716–725.
  • Komogortsev, O., & Rigas, I. (2015). IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 1–8.
  • Abdulin, E., & Komogortsev, O. (2015). Person Verification via Eye Movement-driven Text Reading Model (pp. 1–8).
  • Gias, I., & Komogortsev, O. (2015). Single-Pixel Eye Tracking via Patterned Contact Lenses: Design and Evaluation in HCI Domain (pp. 1–6).
  • Abdulin, E., & Komogortsev, O. (2015). User Eye Fatigue Detection via Eye Movement Behavior (pp. 1–6).
  • Komogortsev, O., & Rigas, I. (2015). BioEye 2015: Competition on Biometrics via Eye Movements (pp. 1–8).

2014

  • Komogortsev, O., Holland, C., Karpov, A., & Price, L. R. (2014). Biometrics via Oculomotor Plant Characteristics: Impact of Parameters in Oculomotor Plant Model. ACM Transactions on Applied Perception, 11(4), 1–17.
  • Rigas, I., & Komogortsev, O. (2014). Biometric Recognition via Probabilistic Spatial Projection of Eye Movement Trajectories in Dynamic Visual Environments. IEEE Transactions on Information Forensics and Security, 9(10), 1743–1754.
  • Tamir, D. E., Dasari, D. K. V., Komogortsev, O., LaKomski, G. R., & Mueller, C. J. (2014). “Detecting Software Usability Deficiencies Through Pinpoint Analysis.” International Journal on Advances in Software, 7(1 & 2), 44–62.
  • Rigas, I., & Komogortsev, O. (2014). Gaze Estimation as a Framework for Iris Liveness Detection (pp. 1–8).
  • Komogortsev, O., & Holland, C. (2014). The Application of Eye Movement Biometrics in the Automated Detection of Mild Traumatic Brain Injury (pp. 1–6).
  • Rigas, I., & Komogortsev, O. (2014). Biometric recognition via fixation density maps, In Proceedings of SPIE Defence+Security (DDS) (pp. 1–10).
  • Komogortsev, O., Karpov, A., & Holland, C. (2014). Template aging in eye movement-driven biometrics, In Proceedings of SPIE Defence+Security (DDS) (pp. 1–10).
  • Komogortsev, O., & Holland, C. (2014). Software Framework for an Ocular Biometric System (pp. 1–2).

2013

  • Holland, C., & Komogortsev, O. (2013). “Complex Eye Movement Pattern Biometrics: The Effects of Environment and Stimulus.” IEEE Transactions on Information Forensics and Security, 8(12), 2155–2126.
  • Komogortsev, O., Holland, C., Jayarathna, S., & Karpov, A. (2013). “2D Linear Oculomotor Plant Mathematical Model: Verification and Biometric Applications.” ACM Transactions on Applied Perception, 10(4), 1–18.
  • Mueller, C., Tamir, D., & Komogortsev, O. (2013). “An Effort-Based Framework for Evaluating Software Usability Design.” ARPN Journal of Systems and Software, 3(4), 65–77.
  • Komogortsev, O., & Karpov, A. (2013). “Automated Classification and Scoring of Smooth Pursuit Eye Movements in Presence of Fixations and Saccades.” Journal of Behavioral Research Methods, 45, 203–215.
  • Komogortsev, O., & Holland, C. (2013). Biometric Authentication via Complex Oculomotor Behavior (pp. 1–8).
  • Komogortsev, O., & Karpov, A. (2013). Liveness Detection via Oculomotor Plant Characteristics: Attack of Mechanical Replicas (pp. 1–8).
  • Holland, C., & Komogortsev, O. (2013). Complex Eye Movement Pattern Biometrics: Analyzing Fixations and Saccades.
  • Brooks, M., Aragon, C., & Komogortsev, O. (2013). Perceptions of Interfaces for Eye Movement Biometrics (pp. 1–8).
  • Dasari, D., Tamir, D., Komogortsev, O., LaKomski, G., & Mueller, C. (2013). Pinpoint Analysis of Software Usability (pp. 1–9).
  • Holland, C., Garza, A., Kurtova, E., Cruz, J., & Komogortsev, O. (2013). Usability Evaluation of Eye Tracking on an Unmodified Common Tablet (pp. 1–6).
  • Fares, R., Fang, S., & Komogortsev, O. (2013). “Can We Beat the Mouse with MAGIC?” (pp. 1–4).
  • Komogortsev, O., Brooks, M., & Aragon, C. (2013). Identifying people by eye movements potential replacement for passwords. SPIE News Room.

2012

  • Komogortsev, O., & Tamir, D. (2012). “A Learning-based Framework for Evaluating Software Usability.” ARPN Journal of Systems and Software, 2(2), 1–39.
  • Komogortsev, O., Karpov, A., Holland, C., & Proença, H. P. (2012). “Multimodal Ocular Biometrics Approach: A Feasibility Study” (pp. 1–8).
  • Holland, C., & Komogortsev, O. (2012). “Biometric Verification via Complex Eye Movements: The Effects of Environment and Stimulus” (pp. 1–8).
  • Kasprowki, P., Komogortsev, O., & Karpov, A. (2012). “First Eye Movement Verification and Identification Competition at BTAS 2012.”
  • Fares, R., Downing, D. T., & Komogortsev, O. (2012). “Magic-Sense: Dynamic Cursor Sensitivity-Based Magic Pointing” (pp. 1–6).
  • Holland, C., & Komogortsev, O. (2012). “Eye Tracking on Unmodified Common Tablets: Challenges and Solutions” (pp. 1–4).
  • Holland, C., Komogortsev, O., & Tamir, D. (2012). “Identifying Usability Issues via Algorithmic Detection of Excessive Visual Search” (pp. 1–10).
  • Komogortsev, O., Karpov, A., & Holland, C. (2012). CUE: Counterfeit-resistant Usable Eye-based Authentication via Scanpaths and Oculomotor Plant Characteristics (pp. 1–10).
  • Komogortsev, O., Karpov, A., Price, L., & Aragon, C. (2012). Biometric Authentication via Oculomotor Plant Characteristic (pp. 1–8).
  • Komogortsev, O., Holland, C., & Jayarathna, S. (2012). Two-Dimensional Linear Homeomorphic Oculomotor Plant Mathematical Model. Retrieved from https://digital.library.txstate.edu/handle/10877/4156
  • Komogortsev, O., Dai, Z., & Gobert, D. (2012). Automated Classification of Complex Oculomotor Behavior. Retrieved from https://digital.library.txstate.edu/handle/10877/4157
  • Komogortsev, O., Ryu, S., & Koh, D. H. (2012). Fast Target Selection via Saccade-driven Methods. Retrieved from https://digital.library.txstate.edu/handle/10877/4158
  • Graham, R., Treffalls, J., Ceballos, N. A., & Komogortsev, O. (2012). “Gaze patterns to food images are modulated by body mass index and gender: An eye-tracking study.”
  • Czyzewska, M., Nolan, A. E., Vanstone, J. E., & Komogortsev, O. (2012). “Visual attention to food ads and processing demands of task: Eye-tracker study.”

2011

  • Graham, R., Hoover, A., Ceballos, N., & Komogortsev, O. (2011). “Body mass index moderates gaze orienting biases and pupil diameter to high and low calorie food images,.” Journal of Appetite, 56(3), 577–586.
  • Holland, C., & Komogortsev, O. (2011). Biometric Identification via Eye Movement Scanpaths in Reading (pp. 1–8).
  • Brooks, M., Aragon, C., & Komogortsev, O. (2011). User Centered Design and Evaluation of an Eye Movement-based Biometric Authentication System (pp. 1–2).
  • Komogortsev, O., Holland, C., & Camou, J. (2011). “Adaptive Eye-Gaze-Guided Interfaces: Design & Performance Evaluation,.”
  • Komogortsev, O., Tamir, D., Mueller, C., Camou, J., & Holland, C. (2011). “EMA: Automated Eye-movement-driven Approach for Identification of Usability Issues,” (pp. 1–10).
  • Tamir, D., Komogortsev, O., Mueller, C., Venkata, D., KaKomski, G. R., & Jamnagarwala, A. M. (2011). “Detection of Software Usability Deficiencies,” (pp. 1–10).
  • Karpov, A., & Komogortsev, O. (2011). Automated Classification and Scoring of Smooth Pursuit Eye Movements in Presence of Fixations and Saccades.
  • Komogortsev, O., Karpov, A., & Aragon, C. (2011). Biometric Authentication via Anatomical Characteristics of the Oculomotor Plant.
  • Philips, C., & Komogortsev, O. (2011). Impact of Resolution and Blur on Iris Identification.
  • Jayarathna, U. K. S., Holland, C., & Komogortsev, O. (2011). Two-Dimensional Linear Homeomorphic Oculomotor Plant Mathematical Model Equations.
  • Komogortsev, O., Holland, C., Tamir, D., & Mueller, C. (2011). Aiding usability evaluation via detection of excessive visual search. In CHI ’11 Extended Abstracts on Human Factors in Computing Systems (pp. 1825–1830). ACM. https://doi.org/10.1145/1979742.1979868

2010

  • Komogortsev, O., Gobert, D. V., Jayarathna, U. K. S., Koh, D. H., & Gowda, S. M. (2010). “Standardization of Automated Analyses of Oculomotor Fixation and Saccadic Behaviors,.” Transactions on Biomedical Engineering, 57, 2635–2645.
  • Koh, D. H., Gowda, M., & Komogortsev, O. (2010). “Real Time Eye Movement Identification Protocol,” (pp. 1–6).
  • Komogortsev, O., Jayarathna, U. K. S., Aragon, C. R., & Mechehoul, M. (2010). “Biometric Identification via an Oculomotor Plant Mathematical Model,” (pp. 1–4).
  • Komogortsev, O., Jayarathna, U. K. S., Koh, D. H., & Gowda, M. (2010). “Qualitative and Quantitative Scoring and Evaluation of the Eye Movement Classification Algorithms,” (pp. 1–4).
  • Mechehoul, M., Jayarathna, S., & Komogortsev, O. (2010). “Statistical Approach to Person Identification via Unique Properties of the Oculomotor Plant.” Retrieved from http://ecommons.txstate.edu/cscitrep/20
  • Komogortsev, O., Tamir, D., & Mueller, C. J. (2010). “The Usability of DeltaV Control Studio Pilot Study Report.”
  • Sewell, W., & Komogortsev, O. (2010). Real Time Eye Gaze Tracking With an Unmodified Commodity Webcam Employing a Neural Network (pp. 1–6).
  • Vining, D. J., Cleveland, D., Wang, J., & Komogortsev, O. (2010). “Principles and Radiologic Applications of Eye-tracking Technology,.”
  • Ceballos, N., & Komogortsev, O. (2010). "Innovative Applications of Oculomotor Plant Metrics as Predictors of Social Drinking Levels and Attentional Biases to Alcohol-Related Stimuli”.
  • Hoover, A., Ceballos, N., Komogortsev, O., & Graham, R. (2010). “Effects of hunger and body mass index on attentional capture by high and low calorie food images: An eye-tracking study.”
  • Gobert, D., & Komogortsev, O. (2010). “Computerized Assessment of Oculomotor Dysfunction in Persons with mTBI.”

2009

  • Komogortsev, O. (2009). “Gaze-contingent video compression with targeted gaze containment performance,.” Journal of Electronic Imaging, 18, 033001–033010.
  • Komogortsev, O., & Khan, J. (2009). “Eye Movement Prediction by Oculomotor Plant Kalman Filter with Brainstem Control,.” Journal of Control Theory and Applications, 7, 14–22.
  • Komogortsev, O., Ryu, Y. S., & Koh, D. H. (2009). “Quick Models for Saccade Amplitude Prediction,.” Journal of Eye Movement Research, 3, 1–13.
  • Fuhrmann, S., Komogortsev, O., & Tamir, D. (2009). “Investigating Hologram-Based Route Planning,.” Transactions in GIS, 13, 177–196.
  • Komogortsev, O., Ryu, Y. S., Koh, D. H., & Gowda, S. A. M. (2009). “Instantaneous Saccade Driven Eye Gaze Interaction,” (pp. 1–8).
  • Feldman, L., Mueller, C., Komogortsev, O., & Tamir, D. (2009). “Usability Testing with Total-Effort Metrics,” (pp. 426–429).
  • Komogortsev, O., Koh, D. H., & Gowda, S. A. M. (2009). “Input evaluation of an eye-gaze-guided interface: kalman filter vs. velocity threshold eye movement identification,” (pp. 197–202).
  • Komogortsev, O., Mueller, C., Tamir, D., & Feldman, L. (2009). “An Effort Based Model of Software Usability,” (pp. 1–8).
  • Mueller, C., Tamir, D., Komogortsev, O., & Feldman, L. (2009). “An Economical Approach to Usability Testing,” (pp. 124–129).
  • Mueller, C., Tamir, D., Komogortsev, O., & Feldman, L. (2009). “Using Designer’s Effort for User Interface Evaluation,” (pp. 1–6).
  • Komogortsev, O., Jayarathna, U. K. S., Aragon, C. R., & Mechehoul, M. (2009). “Biometric Identification via an Oculomotor Plant Mathematical Model,.” Retrieved from http://ecommons.txstate.edu/
  • Komogortsev, O., Jayarathna, U. K. S., Koh, D. H., & Gowda, S. M. (2009). “Qualitative and Quantitative Scoring and Evaluation of the Eye Movement Classification Algorithms,.” Retrieved from http://ecommons.txstate.edu/
  • Ceballos, N., Komogortsev, O., & Turner, G. M. (2009). “Ocular Imaging of Attentional Bias Among College Students: Automatic and Controlled Processing of Alcohol- Related Scenes,.” Journal of Studies on Alcohol and Drugs, 1–8.
  • Fuhrmann, S., Komogortsev, O., & Tamir, D. (2009). “Assessing hologram-based route planning.”
  • Komogortsev, O., Ryu, Y., & Koh, D. (2009). Saccade Amplitude Prediction Models. Retrieved from http://cs.txstate.edu/~ok11/ TR2009_01_07_Saccade_KoRyKo.pdf

2008

  • Komogortsev, O., & Khan, J. I. (2008). “Predictive real-time perceptual compression based on eye-gaze-position analysis,.” ACM Trans. Multimedia Comput. Commun. Appl., 4, 1–16.
  • Komogortsev, O., Khan, V., & Khan, J. (2008). “Eye Movement Prediction by Kalman Filter with Integrated Linear Horizontal Oculomotor Plant Mechanical Model,” (pp. 229–236).
  • Komogortsev, O., & Jayarathna, U. K. S. (2008). “2D Oculomotor Plant Mathematical Model for eye movement simulation,” (pp. 1–8).
  • Tamir, D., Komogortsev, O., & Mueller, C. J. (2008). An effort and time based measure of usability (pp. 47–52).
  • Komogortsev, O., & Jayarathna, U. K. S. (2008). 2D Oculomotor Plant Mathematical Model Equations. Retrieved from http://cs.txstate.edu/~ok11/TR2008_05_30_2DOPMM_KoJa.pdf

2007

  • Komogortsev, O., & Khan, J. (2007). “Perceptual Multimedia Compression based on the Predictive Kalman Filter Eye Movement Modeling,” (pp. 1–12).
  • Komogortsev, O., & Khan, J. (2007). “Kalman Filtering in the Design of Eye-Gaze-Guided Computer Interfaces,” (pp. 1–10).

2006

  • Khan, J., & Komogortsev, O. (2006). “A Hybrid Scheme for Perceptual Object Window Design with Joint Scene Analysis and Eye-Gaze Tracking for Media Encoding based on Perceptual Attention,.” Journal of Electronic Imaging, 15(2), 023018-01-023018–12.
  • Komogortsev, O., & Khan, J. (2006). “Perceptual Attention Focus Prediction for Multiple Viewers in Case of Multimedia Perceptual Compression with Feedback Delay,” (pp. 101–108).

2005

  • Komogortsev, O., & Khan, J. (2005). “Perceptual media compression for multiple viewers with feedback delay,” (pp. 1–1).

2004

  • Khan, J., & Komogortsev, O. (2004). “A Hybrid Scheme for Perceptual Object Window Design with Joint Scene Analysis and Eye-Gaze Tracking for Media Encoding based on Perceptual Attention,” (pp. 1341–1352).
  • Khan, J., & Komogortsev, O. (2004). “Perceptual video compression with combined scene analysis and eye-gaze tracking,” (pp. 57–57).
  • Komogortsev, O., & Khan, J. (2004). Predictive Perceptual Compression for Real Time Video Communication (pp. 220–227).
  • Komogortsev, O., & Khan, J. I. (2004). “Contour Approximation for Faster Object-based Transcoding with Higher Perceptual Quality,” (pp. 441–446).

2003

  • Komogortsev, O. (2003). “Contour Approximation Can Lead to Faster Object Based Transcoding with Higher Perceptual Quality.” Retrieved from , http://www.medianet.kent.edu/techreports/TR-2003-01-01-focusapproximation-KK.pdf.

2002

  • Komogortsev, O., Khan, Y., Patel, J. S. D., Oh, W., Guo, Z., Gu, W., & Mail, P. (2002). Resource Adaptive Netcentric Systems on Active Network: a Self-Organizing  Video Stream that Automorphs itself while in Transit Via a Quasi-Active Network (pp. 409–426).
  • Khan, J., & Komogortsev, O. (2002). “Dynamic Gaze Span Window based Foveation for Perceptual Media Streaming”,. Retrieved from http://www.medianet.kent.edu/techreports/TR-2002-11-01-focus-KK.pdf.
  • Khan, J., & Komogortsev, O. (2002). “Impact on Stream Compression and Video Quality Motion Vector Reuse Transcoding.” Retrieved from http://www.medianet.kent.edu/labarea/student-reports/mv_bypass_paper3-oleg.doc

2001

  • Komogortsev, O., Khan, J. I., Yang, S. S., Gu, Q., Patel, D., Mail, P., … Guo, Z. (2001). “Resource adaptive netcentric systems: a case study with SONET - a self-organizing network embedded transcoder,” (pp. 1–4).