Portrait of Dr. Tahir Ekin

Dr. Tahir Ekin

  • Professor - Endowed Chair at Dept of Information Systems & Analytics, McCoy College of Business
  • Program Staff at Center for Analytics & Data Science

Scholarly and Creative Works

2025

  • Shaw, L., & Ekin, T. (n.d.). A Machine Learning Approach for Anomaly Detection in COVID-19 PCR Test Results Using Isolation Forests.
  • Shaw, L., Ansari, M. W., & Ekin, T. (n.d.). Adversarial Natural Language Processing: Overview, Challenges and Future Directions.

2024

  • Caballero, W. N., Camacho Rodriguez, J. M., Ekin, T., & Naveiro, R. (2024). Manipulating Hidden Markov Model Inferences by Corrupting Batch Data. Computers and Operations Research, 162(February 2024).
  • Kumaraswamy, N., Ekin, T., Park, C., Markey, M. K., Barner, J. C., & Rascati, K. (2024). Using a Bayesian Belief Network to detect healthcare fraud. Expert Systems with Applications, 238.
  • Shaw, L., Ansari, W., & Ekin, T. (n.d.). Adversarial Natural Language Processing: Overview, Challenges and Future Directions. In Proceedings of 58th Hawaii International Conference on System Sciences. (pp. 1–10).
  • Ekin, T., Shaw, L., & Bellamkonda, S. (n.d.). Adversarial Attacks and Data-Driven Dynamic Outlier Detection Systems. In 5th International Conference on InfoSymbiotics/Dynamic Data Driven Applications Systems (DDDAS 2024).
  • Shaw, L., Hebli, P., & Ekin, T. (2024). Siamese Networks and Adversarial Attacks: An Overview. In 2024 IEEE International Conference on Prognostics and Health Management.

2023

  • Ekin, T., Naveiro, R., Barran, A. T., & Rios Insua, D. (2023). Augmented Probability Simulation Methods for Sequential Games. European Journal of Operational Research, 306(1), 418-430.
  • Ekin, T., Damien, P., & Walker, S. (2023). Augmented simulation methods for discrete stochastic optimization with recourse. Annals of Operations Research, 320, 771–793.
  • Ekin, T. (2023). Adversarial Outlier Detection for Health Care Fraud. In AMCIS 2023 (Vol. 2023). Panama City, Panama, AIS.
  • Ekin, T., & Garega, V. (2023). Command and control with poisoned temporal batch data. In 2023 SPIE Proceedings of Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications V (Vol. 12538, pp. 73–81).

2022

  • Ekin, T., & Musal, R. M. (2022). Integrated statistical and decision models for multi-stage health care audit sampling. Journal of Applied Statistics, 49(9), 2307–2325.
  • Zafari, B., Ekin, T., & Ruggeri, F. (2022). Multicriteria Decision Frontiers for Prescription Anomaly Detection Over Time. Journal of Applied Statistics, 49, 3638–3658.
  • Ekin, T. (2022). Forecasting with Perturbed Data.
  • Ekin, T., Naveiro, R., & Camacho Rodriguez, J. M. (n.d.). Adversarial Forecasting through Adversarial Risk Analysis within a DDDAS Framework.
  • Kumaraswamy, N., Markey, M., Ekin, T., Barner, J., & Rascati, K. (2022). Healthcare fraud data mining methods – A look back and look ahead. Perspectives in Health Information Management, 19(1), 1i.

2021

  • Ekin, T., & Aktekin, T. (2021). Decision Making under Uncertain and Dependent System Rates in Service Systems. European Journal of Operational Research, 291(1), 335–348.
  • Ekin, T., & Damien, P. (2021). Analysis of Health Care Billing via Quantile Variable Selection Models. Healthcare, 9(10).
  • Ekin, T., & Lakomski, G. R. (2021). Risk based Payment Integrity Evaluation. In Proceedings of 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI) (pp. 1–6). Sakheer, Bahrain: IEEE. https://doi.org/doi: 10.1109/ICDABI51230.2020.9325603
  • Ekin, T., Puggioni, G., & Canas Rodrigues, P. (2021). Foreword: Special issue of ASMBI for y‐BIS 2019: Recent Advances in Business Analytics and Data Science. Applied Stochastic Models in Business and Industry, 37(2), 157–158.
  • Fulton, L. V., Adepoju, L., Dolezel, D. M., Ekin, T., Gibbs, D. L., Hewitt, B. A., … Woodard, L. (2021). Determinants of Diabetes Disease Management, 2011-2019. Healthcare, 9(994).
  • Fulton, L. V., Adepoju, L., Dolezel, D. M., Ekin, T., Gibbs, D. L., Hewitt, B. A., … Woodard, L. (2021). Determinants of Diabetes Disease Management, 2011-2019. Healthcare, 9(8), 944. https://doi.org/10.3390/healthcare9080944
  • Fulton, L. V., Adepoju, L., Dolezel, D. M., Ekin, T., Gibbs, D. L., Hewitt, B. A., … Woodard, L. (2021). Determinants of Diabetes Disease Management, 2011-2019. Healthcare, 9(994).
  • Ekin, T., Frigau, L., & Conversano, C. (2021). Health Care Fraud Classifiers in Practice. Applied Stochastic Models in Business and Industry, 37(6), 1182–1199.

2020

  • Lopez Perez, F., Ekin, T., Mendez, F., & Jimenez, J. (2020). Risk Balanced Territory Design for a Micro Finance Institution. Journal of Industrial and Management Optimization, 16(2), 741–758.
  • Ekin, T., Zarnikau, J., & Damien, P. (2020). Estimating marginal effects of key factors that influence electricity demand and price distributions in Texas via quantile variable selection methods. Journal of Energy Markets, 13(1), 1–29. https://doi.org/10.21314/JEM.2020.202
  • Ekin, T. (2020). Discussion of “Machine Learning in Nonlife Insurance.” Applied Stochastic Models in Business and Industry, 36, 541–544. https://doi.org/10.1002/asmb.2558
  • Konur, D., & Ekin, T. (2020). Make-to-Order Production Planning with Uncertain Quality (pp. 212–219). International Conference on Information Systems, Logistics and Supply Chain. Retrieved from https://www.scopus.com/record/display.uri?eid=2-s2.0-85085939768&origin=resultslist

2019

  • Zafari, B., & Ekin, T. (2019). Topic Modelling for Medical Prescription Fraud and Abuse Detection. Journal of the Royal Statistical Society. Series C: Applied Statistics, 68, 751–769.
  • Ekin, T. (2019). Statistics and Health Care Fraud: How to Save Billions. Boca Raton, FL.: Chapman Hall/CRC Press. ASA-CRC Series on Statistical Reasoning in Science and Society. Retrieved from https://www.crcpress.com/Statistics-and-Health-Care-Fraud-How-to-Save-Billions/Ekin/p/book/9781138197428
  • Ekin, T., Lakomski, G., & Musal, R. (2019). An Unsupervised Bayesian Hierarchical Method for Medical Fraud Assessment. Statistical Analysis and Data Mining, 12, 116–124.
  • Ekin, T. (2019). Fraud Analytics. Proceedings of Y-BIS 2019 Conference: Recent Advances in Data Science and Business Analytics, 33.
  • Ekin, T. (2019). An Integrated Decision-making Framework for Medical Audit Sampling (pp. 4107–4114). Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS52).

2018

  • Musal, R., & Ekin, T. (2018). Information Theoretic Multi-Stage Sampling Framework for Medical Audits. Applied Stochastic Models in Business and Industry, 34, 893--907.
  • Ekin, T., Ieva, F., Ruggeri, F., & Soyer, R. (2018). Statistical Medical Fraud Assessment: An Exposition to an Emerging Field. International Statistical Review, 86, 379--402.
  • Ekin, T. (2018). Integrated Maintenance and Production Planning with Endogenous Uncertain Yield. Reliability Engineering and System Safety, 179(November), 52–61.
  • Zafari, B., & Ekin, T. (2018). Topic Modelling for Medical Prescription Fraud and Abuse Detection. In Proceedings of 13th INFORMS Workshop on Data Mining and Health Informatics.

2017

  • White, G., Ekin, T., & Visinescu, L. (2017). Analysis of Protective Behavior and Security Incidents for Home Computers. Journal of Computer Information Systems, 57(4), 353–363.
  • Ekin, T., Polson, N. G., & Soyer, R. (2017). Augmented Nested Sampling for Stochastic Programs with Recourse and Endogenous Uncertainty. Naval Research Logistics, 64(8), 613--627.
  • Ekin, T., Ieva, F., Ruggeri, F., & Soyer, R. (2017). On the Use of the Concentration Function in Medical Fraud Assessment. The American Statistician, 71(3), 236–241.
  • Musal, R., & Ekin, T. (2017). Medical Overpayment Estimation: A Bayesian Approach. Statistical Modelling, 17(3), 196–222.
  • Bastian, N. D., Ekin, T., Griffin, H. M., Griffin, P. M., Fulton, L. V., & Grannan, B. C. (2017). Stochastic Multi-Objective Auto-Optimization for Resource Allocation Decision-Making in Fixed-Input Health Systems. Health Care Management Science, 20(2), 246–264. https://doi.org/10.1007/s10729-015-9350-2 JCR IF: 2.1, JCR 5-Year IF: 2.4, AR: 19-20%

2016

  • Ekin, T., Kocadagli, O., Bastian, N., Fulton, L. V., & Griffin, P. (2016). Fuzzy Decision-Making in Health Systems: A Resource Allocation Model. Euro Journal on Decision Processes, 4(3), 245–267.
  • Aktekin, T., & Ekin, T. (2016). Stochastic Call Center Staffing with Uncertain Arrival, Service and Abandonment Rates: A Bayesian Perspective. Naval Research Logistics, 63(6), 460–478.

2015

  • Lopez, F., Ekin, T., Mendez, F., & Jimenez, J. (2015). Hybrid heuristic for dynamic location-allocation on micro-credit territory design. Computacion y Sistemas, 19(4), 783–804.
  • Ekin, T., Musal, R., & Fulton, L. (2015). Overpayment Models for Medical Audits: Multiple Scenarios. Journal of Applied Statistics, 42(11), 2391–2405.
  • Ekin, T., Musal, R., & Fulton, L. (2015). Overpayment Models for Medical Audits: Multiple Scenarios. Journal of Applied Statistics, 42(11), 2391–2405. https://doi.org/https://doi.org/10.1080/02664763.2015.1034659 JCR IF:  .8
  • Lopez, F., Ekin, T., Mendez, F., & Jimenez, J. (2015). Territory Design with Risk for a Micro Finance Institution. Texas State University Center for High Performance Systems.

2014

  • Ekin, T., Polson, N., & Soyer, R. (2014). Augmented MCMC Simulation for Two-Stage Stochastic Programs with Recourse. Decision Analysis, 11(4), 250–264.
  • Bastian, N., Fulton, L. V., Shah, V., & Ekin, T. (2014). Resource allocation decision making in the military health system. IIE Transactions on Healthcare Systems Engineering, 4(2), 80–87.

2013

  • Ekin, T., Ieva, F., Ruggeri, F., & Soyer, R. (2013). Bayesian Co-Clustering Methods for Assessment of Healthcare Fraud (4th ed., Vol. 2013). The George Washington University The Institute for Integrating Statistics in Decision Sciences.
  • Ekin, T., Ieva, F., Ruggeri, F., & Soyer, R. (2013). Application of Bayesian Methods in Detection of Healthcare Fraud. Chemical Engineering Transactions, 33, 151–156.
  • Ekin, T., Ieva, F., Ruggeri, F., & Soyer, R. (2013). Statistical Issues in Medical Fraud Assessment. Milano, Italy: MOX, Dipartimento di Matematica, Politecnico di Milano. Retrieved from mox.polimi.it/it/progetti/pubblicazioni/quaderni/28-2013.pdf
  • Ekin, T., Ieva, F., Ruggeri, F., & Soyer, R. (2013). Statistical Issues in Medical Fraud Assessment (11th ed., Vol. 2013). Washington, DC, United States: The George Washington University The Institute for Integrating Statistics in Decision Sciences. Retrieved from business.gwu.edu/decisionsciences/i2sds/pdf/TR-2013-11.pdf
  • Ekin, T., Ieva, F., Ruggeri, F., & Soyer, R. (2013). Application of Bayesian Methods in Healthcare Fraud (1st ed., Vol. 2013). Washington, DC, United States: The George Washington University The Institute for Integrating Statistics in Decision Sciences.

2012

  • Ekin, T., Polson, N., & Soyer, R. (2012). Simulation-Based Two-Stage Stochastic Programming with Recourse (4th ed., Vol. 2012). The George Washington University The Institute for Integrating Statistics in Decision Sciences. Retrieved from http://business.gwu.edu/about-us/research/institute-for-integrating-statistics-in-decision-sciences/technical-reports/2012-2/
  • Ekin, T., Caglar, T., & Soyer, R. (2012). Bayesian Co-Clustering Methods in Healthcare Fraud Detection.